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ABSTRACT

We present an updated version of the Multicolor Light Curve Shape method to
measure distances to type Ia supernovae (SN Ia), incorporating new procedures forK-
correction and extinction corrections. We also develop a simple model to disentangle
intrinsic color variations and reddening by dust, and expand the method to incorporate
U-band light curves and to more easily accommodate prior constraints on any of the
model parameters. We apply this method to 133 nearby SN Ia, including 95 objects
in the Hubble flow (cz ≥ 2500 km s−1), which give an intrinsic dispersion of less
than 7% in distance. The Hubble flow sample, which is of critical importance to all
cosmological uses of SN Ia, is the largest ever presented with homogeneous distances.
We find the Hubble flow supernovae withH0dSN ≥ 7400 km s−1 yield an expansion
rate that is 6.5± 1.8% lower than the rate determined from supernovae within that
distance, and this can have a large effect on measurements of the dark energy equation
of state with SN Ia. Peculiar velocities of SN Ia host galaxies in the rest frame of
the Local Group are consistent with the dipole measured in the Cosmic Microwave
Background. Direct fits of SN Ia that are significantly reddened by dust in their host
galaxies suggest their mean extinction law may be describedby RV ≃ 2.7, but optical
colors alone provide weak constraints onRV .
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1. Introduction

The cosmological applications of type Ia supernovae (SN Ia)result from precise distances
to these calibrated candles. It has been well established that the intrinsic luminosity of SN Ia is
correlated with the shape of their optical light curves (Phillips 1993; Hamuy et al. 1995; Riess,
Press, & Kirshner 1995a; Hamuy et al. 1996a; Riess, Press, & Kirshner 1996a). Determining a
precise distance requires well-observed SN Ia light curvesin multiple passbands, to constrain the
intrinsic luminosity and extinction by dust along the line of sight to each SN Ia.

A number of methods have been developed to measure calibrated distances from SN Ia multi-
color light curves, with each enjoying a similar level of success. The first of these was introduced
by Phillips (1993), who noted that the parameter∆m15(B), the amount by which a SN Ia declined
in the B-band during the first fifteen days after maximum light, was well correlated with SN Ia
intrinsic luminosity. The∆m15 method was transformed by Hamuy et al. (1996a), in which∆m15

became a parameter in a multi-dimensional fit to six templateBVI light curves spanning a wide
range in∆m15(B) as it was originally defined. Phillips et al. (1999) presentthe current version of
this method, which incorporates measurement of the extinction via late-timeB−V color measure-
ments (roughly independent of∆m15) and B−V andV−I measurements at maximum light (for
the measured∆m15, determined in an iterative fashion). Updates to this technique are given by
Germany et al. (2004) and Prieto, Rest, & Suntzeff (2006), the latter developing a technique to
describe a continuous family of light curves parameterizedby ∆m15.

Tripp & Branch (1999) present a two-parameter method, empirically correlating SN Ia lumi-
nosity to∆m15 and maximum lightB−V color, but without regard to the source of the color vari-
ation (i.e., extinction or intrinsic variation). Parodi etal. (2000) and Reindl et al. (2005) present
similar studies, with empirical correlations between SN Iamaximum light magnitudes inBVI ,
∆m15 and color.

Other methods include the stretch correction of Perlmutteret al. (1997), in which the SN
Ia intrinsic luminosity is correlated with a simple stretching of the time axis of a fiducial light
curve. This method has been presented in detail for theB band (Goldhaber et al. 2001), and can
be extended straightforwardly toU andV (with R andI posing more difficulty; Nugent, Kim, &
Perlmutter 2002; Knop et al. 2003; Nobili et al. 2005; Jha et al. 2006). Guy et al. (2005) use an
innovative approach to constrain the spectral energy distribution of SN Ia, parameterized continu-
ously as a function of color and stretch, and allows for the generation of light curve templates in
arbitrary passbands. These methods all determine distances by correlating a distance-dependent
parameter (such as peak magnitude in a particular passband,or an average magnitude difference
between the observations and templates) and one or more distance-independent parameters (such
as color, stretch, or∆m15).

Wang et al. (2003) describe a novel technique which derives distances based on “light curves”
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as a function of color rather than time, which may have interesting implications for the physics
behind the observed correlations. Finally, Tonry et al. (2003) follow a non-parametric approach,
by directly fitting an observed multicolor light curve to a library of nearby SN Ia, and deriving an
average distance weighted by the goodness of fit to each object in the library.

Here we describe an updated version of the Multicolor Light Curve Shape method, denoted
here as MLCS2k2. Riess, Press, & Kirshner (1995a) presentedthe first incarnation of this method
(called LCS as it was based only onV band data), in which a continuum of template light curves
was created based on a “training set” of SN Ia with known relative distances and the parameter
∆, a particular SN’s under- or over-luminosity relative to some fiducial value. The luminosity
correction,∆, was used as a parameter in a least-squares fit, resulting in abest-fit distance for each
SN, along with a quantitative estimate of the uncertainty. The MLCS method, presented by Riess,
Press, & Kirshner (1996a) gave the details of the model, as well as incorporatingBVRI light curves
and providing an estimate of extinction by dust. Riess et al.(1998a) updated the training set, using
reliable distances measured by the Hubble Law in favor of other methods, added a quadratic (∆2)
term to create the template light curves, and included the effects of covariance in the model. The
application of this version of MLCS to nearby SN Ia and the Hubble Constant is given by Jha et
al. (1999a).

The MLCS approach has some advantages: by using a relativelylarge training set to define
a continuum of templates, the method becomes less sensitiveto peculiarities of individual objects.
During the training process, the variance and covariance inthe residuals determine the uncertainty
in the model, and this is then used to determine statistically reliable estimates of goodness-of-fit
and parameter uncertainties when the model is applied to other objects. The model also attempts
a physically motivated separation of extinction by dust from intrinsic color variations (rather than
empirical correlations with color), and uses all of the light curves (at all epochs) to constrain the
extinction. Finally the model is easily extended, for example, with the inclusion of a quadratic
term in∆, or the incorporation of theU-band presented here. The major disadvantage is that the
method requires accurate estimates of luminosity and extinction for the training set sample in order
to construct reliable templates.

We have compiled modern multicolor photoelectric and CCD Johnson/CousinsUBVRI data
from a variety of sources. The precision of SN Ia distances demands high quality photometry, and
we have relied most heavily on large, homogeneous data sets,such as the observations presented
by Hamuy et al. (1996b) from the Calán/Tololo survey (29 SN Ia), as well as those of Riess et
al. (1999) and Jha et al. (2006), consisting of 22 and 44 SN Ia,respectively, from the CfA mon-
itoring campaign. The complete sample we analyze consists of 133 SN Ia described in Table 1.
For a number of objects we have combined data sets from different sources (see Jha et al. 2006 for
some comparisons); in some cases we had to make subjective assessments of the relative quality
of inconsistent data.
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The basic framework for MLCS2k2 was laid out by Jha (2002)1 and it has already been ap-
plied to SN Ia cosmology, including the silver and gold samples of Riess et al. (2004). This work
showed that the Universe underwent a transition from an epoch of deceleration due to dark matter
to current acceleration driven by dark energy, whose inferred properties are consistent with the
cosmological constant. In addition, Riess et al. (2005) useMLCS2k2 distances to show various es-
timates ofH0 from SN Ia can be reconciled through the use of modern Cepheidand supernova data,
derivingH0 = 73± 4 (statistical)± 5 (systematic) km s−1 Mpc−1. In this paper, we focus only on
relative distances to nearby SN, independent of the zeropoint derived from external measurements
(e.g., Cepheid distances to SN Ia hosts; Freedman et al. 2001; Sandage et al. 2006).

1Because the basic algorithms were designed in 2002, we continue to refer to this SN distance fit-
ter as MLCS2k2, even though its implementation, applicability, and robustness have evolved substan-
tially since then. Details of the model presented here, as well as recent updates, can be found at
http://astro.berkeley.edu/∼saurabh/mlcs2k2/

http://astro.berkeley.edu/~saurabh/mlcs2k2/
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Table 1. Supernova and Host Galaxy Data

SN Ia ℓa ba cz⊙b czLG
b czCMB

b Morphc SN Offsetsd t1e Filters E(B−V)f References
deg deg km s−1 km s−1 km s−1 ′′N ′′E days mag

1972E 314.84 +30.08 404 190 678 Sd/Irr −100.0 −38.0 +8.7 UBV 0.056 1
1980N 240.16 −56.63 1760 1633 1653 S0 −20.0 +220.0 −1.0 UBVRI 0.021 2
1981B 292.97 +64.74 1808 1662 2151 Sbc +42.0 +39.0 −0.2 UBVR 0.018 3,4
1981D 240.21 −56.69 1760 1633 1653 S0 −100.0 −20.0 −5.3 UBV 0.021 2
1986G 309.54 +19.40 547 301 803 S0 −60.0 +120.0 −5.7 UBVRI 0.115 5
1989B 241.92 +64.42 703 567 1051 Sb +50.0 −15.0 −2.5 UBVRI 0.032 6
1990N 294.36 +75.98 978 885 1298 Sbc −1.0 +65.0 −10.4 UBVRI 0.026 7
1990O 37.65 +28.35 9193 9340 9175 Sa −3.9 +21.8 +0.6 BVRI 0.093 8
1990T 341.50 −31.53 12112 12025 12013 Sa −1.9 +24.8 +14.9 BVRI 0.053 8
1990Y 232.64 −53.85 11721 11597 11622 E −5.0 +1.0 +16.2 BVRI 0.008 8
1990af 330.81 −42.20 15169 15059 15056 S0 +7.4 −8.0 −3.1 BV 0.035 8
1991M 30.36 +45.90 2180 2265 2277 Sc +60.0 +36.0 +1.8 VRI 0.038 9
1991S 214.06 +57.43 16369 16263 16688 Sb +17.3 +4.4 +10.8 BVRI 0.026 8,10
1991T 292.60 +65.19 1736 1591 2078 Sbc +44.0 +26.0 −11.1 UBVRI 0.022 7,10
1991U 311.82 +36.20 9503 9292 9801 Sbc +5.8 −2.2 +10.4 BVRI 0.062 8
1991ag 342.56 −31.60 4264 4182 4161 Sb +22.1 −4.4 +5.6 BVRI 0.062 8
1991bg 278.23 +74.46 1060 955 1391 E −57.0 +2.0 +0.9 BVRI 0.041 11,12,13
1992A 235.90 −54.06 1877 1747 1781 S0 +62.0 −3.0 −7.0 UBVRI 0.018 10,14
1992G 184.62 +59.84 1565 1541 1827 Sc −10.0 +27.0 +3.0 VRI 0.020 9
1992J 263.55 +23.50 13371 13077 13708 E/S0 +12.0 −11.9 +14.6 BVI 0.057 8
1992K 306.28 +16.30 3087 2828 3340 Sb −15.4 −1.9 +13.6 BVI 0.101 8
1992P 295.62 +73.10 7555 7449 7881 Sa +9.8 −4.3 −0.5 BVI 0.021 8
1992ae 332.70 −41.90 22544 22440 22426 E +4.0 +2.1 +2.5 BV 0.036 8
1992ag 312.48 +38.30 7465 7260 7765 Sa 0.0 −3.0 −0.4 BVI 0.097 8
1992al 347.33 −38.40 4377 4324 4228 Sb −12.0 +19.0 −4.9 BVRI 0.034 8
1992aq 1.78 −65.30 30519 30536 30254 Sa −7.1 +2.4 +2.2 BVI 0.012 8
1992au 319.11 −65.80 18407 18338 18213 E +8.9 +21.2 +12.6 BVI 0.017 8
1992bc 245.70 −59.60 6056 5933 5936 Sab −2.0 +16.1 −10.1 BVRI 0.022 8
1992bg 274.61 −18.30 10553 10261 10697 Sa +5.8 −3.4 +4.3 BVI 0.185 8
1992bh 267.85 −37.30 13490 13254 13518 Sbc −3.6 +1.9 −0.6 BVI 0.022 8
1992bk 265.01 −48.90 17418 17229 17372 E +21.1 +11.9 +8.6 BVI 0.015 8
1992bl 344.12 −63.90 13101 13076 12871 S0/Sa −21.8 +15.3 +3.1 BVI 0.011 8
1992bo 261.88 −80.30 5666 5636 5435 E/S0 −54.7 −47.3 −7.5 BVRI 0.027 8
1992bp 208.83 −51.00 23773 23704 23646 E/S0 −1.4 −5.4 −1.6 BVI 0.069 8
1992br 288.01 −59.40 26442 26306 26319 E −6.3 +3.6 +1.8 BV 0.026 8
1992bs 240.02 −55.33 19097 18965 18998 Sb +3.6 −9.0 +2.5 BV 0.011 8
1993B 273.32 +20.46 20866 20563 21191 Sb +5.4 +0.9 +3.6 BVI 0.079 8
1993H 318.22 +30.33 7165 6962 7430 Sb +12.3 +1.0 −1.1 BVRI 0.060 8,10
1993L 5.95 −64.37 1858 1885 1587 Sc +1.4 −25.0 +17.3 BVRI 0.014 10
1993O 312.41 +28.92 15289 15065 15567 E/S0 +8.4 −14.1 −6.3 BVI 0.053 8
1993ac 149.70 +17.21 14800 14959 14784 E +31.0 −5.3 +7.0 BVRI 0.163 15
1993ae 144.62 −63.22 5712 5820 5410 E +22.7 +16.1 +13.8 BVRI 0.038 15
1993ag 268.43 +15.92 14690 14382 15003 E/S0 −6.1 −5.0 −1.7 BVI 0.112 8
1993ah 25.88 −76.77 8842 8892 8543 S0 +8.1 −0.9 +11.8 BVI 0.020 8
1994D 290.15 +70.14 592 469 928 S0 +7.8 −9.0 −13.5 UBVRI 0.022 10,16,17,18
1994M 291.68 +63.03 6943 6788 7289 E −28.2 +3.4 +3.1 BVRI 0.023 15
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Table 1—Continued

SN Ia ℓa ba cz⊙b czLG
b czCMB

b Morphc SN Offsetsd t1e Filters E(B−V)f References
deg deg km s−1 km s−1 km s−1 ′′N ′′E days mag

1994Q 64.38 +39.67 8672 8871 8670 S0 −3.7 −0.1 +10.8 BVRI 0.017 15
1994S 187.37 +85.14 4525 4501 4806 Sab −6.9 −14.0 −4.5 BVRI 0.021 15
1994T 318.01 +59.83 10396 10265 10709 Sa −12.0 +3.8 +0.2 BVRI 0.029 15
1994ae 225.34 +59.66 1301 1175 1637 Sc +6.1 −29.7 −11.6 UBVRI 0.030 10,19
1995D 230.02 +39.65 1966 1774 2300 S0 −87.8 +11.8 −6.5 BVRI 0.058 10,15
1995E 141.99 +30.26 3470 3638 3496 Sb −20.8 +7.6 −1.9 BVRI 0.027 15
1995ac 58.69 −55.04 14990 15157 14635 Sa −1.4 −0.9 −5.1 BVRI 0.042 10,15
1995ak 169.65 −48.98 6811 6875 6589 Sbc +0.8 −7.1 +3.6 BVRI 0.038 15
1995al 192.17 +50.83 1514 1465 1777 Sbc −3.1 −14.7 −3.9 UBVRI 0.014 15
1995bd 187.11 −21.66 4377 4364 4326 Sa −1.0 +22.9 −8.4 BVRI 0.498 15
1996C 99.59 +65.00 8094 8206 8244 Sa +13.2 −1.8 +2.4 BVRI 0.013 15
1996X 310.23 +35.64 2032 1815 2333 E −31.7 −51.4 −3.0 UBVRI 0.069 15,20
1996Z 253.60 +22.55 2254 1971 2584 Sb −69.9 +2.0 +6.1 BVR 0.064 15
1996ab 43.15 +56.93 37109 37201 37239 Sa +0.6 +2.0 +1.0 BV 0.032 15
1996ai 101.58 +79.24 873 910 1101 Scd +2.9 +23.3 −1.1 UBVRI 0.014 15
1996bk 111.25 +54.88 1985 2139 2085 S0 −9.7 −18.1 +3.0 BVRI 0.018 15
1996bl 116.99 −51.30 10793 10990 10447 Sc +5.6 −3.2 −2.4 BVRI 0.092 15
1996bo 144.46 −48.95 5182 5328 4893 Sc −2.1 +6.7 −6.2 BVRI 0.077 10,15
1996bv 157.33 +17.97 4996 5119 5013 Sa +2.0 −2.0 +5.1 BVRI 0.105 15
1997E 140.20 +25.81 4001 4184 3997 S0 +57.0 −32.0 −2.6 UBVRI 0.124 21
1997Y 124.77 +62.37 4806 4911 4964 Sb +2.0 −8.0 +2.2 UBVRI 0.017 21
1997bp 301.15 +51.21 2492 2301 2831 Sd/Irr −20.0 −15.0 −2.1 UBVRI 0.044 10,21
1997bq 136.29 +39.48 2780 2943 2839 Sbc −60.0 +50.0 −10.3 UBVRI 0.024 21
1997br 311.84 +40.32 2085 1884 2391 Sd/Irr +52.0 −21.0 −8.7 UBVRI 0.113 10,21,22
1997cn 9.14 +69.51 4855 4846 5092 E −12.0 +7.0 +5.4 UBVRI 0.027 21,23
1997cw 113.09 −49.48 5133 5342 4782 Sab +4.0 +8.0 +12.0 UBVRI 0.073 21
1997dg 103.61 −33.98 9238 9507 8890 · · · 0.0 +2.0 +0.8 UBVRI 0.078 21
1997do 171.00 +25.26 3034 3084 3140 Sbc −4.0 −3.0 −6.1 UBVRI 0.063 21
1997dt 87.56 −39.12 2194 2451 1828 Sbc +1.0 −9.0 −7.9 UBVRI 0.057 21
1998D 63.78 +72.91 3765 3825 3962 Sa −7.0 −26.0 +32.4 UBVRI 0.015 21
1998V 43.94 +13.34 5268 5464 5148 Sb +21.0 −21.0 +2.7 UBVRI 0.196 21
1998ab 124.86 +75.19 8134 8181 8354 Sc +12.0 +2.0 −7.4 UBVRI 0.017 21
1998aq 138.83 +60.26 1184 1274 1354 Sb +7.0 −18.0 −10.1 UBVRI 0.014 19
1998bp 43.64 +20.48 3127 3312 3048 E +13.0 −1.0 −1.5 UBVRI 0.076 21
1998bu 234.41 +57.01 855 702 1204 Sab +55.0 +4.0 −7.7 UBVRI 0.025 24,25
1998co 41.52 −44.94 5418 5573 5094 S0 +5.0 +2.0 +3.0 UBVRI 0.043 21
1998de 122.03 −35.24 4990 5228 4671 S0 +3.0 +72.0 −8.6 UBVRI 0.057 21,26
1998dh 82.82 −50.64 2678 2892 2307 Sbc +10.0 −54.0 −7.8 UBVRI 0.068 21
1998dk 102.85 −62.16 3963 4128 3609 Sc +3.0 +5.0 +18.9 UBVRI 0.044 21
1998dm 145.97 −67.40 1968 2061 1668 Sc −37.0 −14.0 +9.9 UBVRI 0.044 21
1998dx 77.67 +26.67 16197 16459 16102 Sb −12.0 +21.0 +1.2 UBVRI 0.041 21
1998ec 166.29 +20.71 5966 6043 6032 Sb −20.0 −9.0 +13.3 UBVRI 0.085 21
1998ef 125.88 −30.56 5319 5558 5020 Sa −2.0 +6.0 −7.3 UBVRI 0.073 21
1998eg 76.46 −42.06 7423 7662 7056 Sc −25.0 −26.0 −0.1 UBVRI 0.123 21
1998es 143.18 −55.18 3168 3301 2868 S0/Sa +11.0 0.0 −11.0 UBVRI 0.032 21,27
1999X 186.58 +39.59 7503 7474 7720 · · · +6.0 +4.0 +14.0 UBVRI 0.032 21
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Table 1—Continued

SN Ia ℓa ba cz⊙b czLG
b czCMB

b Morphc SN Offsetsd t1e Filters E(B−V)f References
deg deg km s−1 km s−1 km s−1 ′′N ′′E days mag

1999aa 202.72 +30.31 4330 4227 4572 Sc +28.0 +1.0 −10.1 UBVRI 0.040 10,21,27,28
1999ac 19.88 +39.94 2848 2904 2943 Scd −30.0 +24.0 −14.4 UBVRI 0.046 21,27
1999aw 260.24 +47.45 11392 11168 11763 · · · 0.0 0.0 −8.2 BVRI 0.032 29
1999by 166.91 +44.11 657 704 827 Sb +91.0 −96.0 −10.9 UBVRI 0.016 27,30
1999cc 59.66 +48.74 9392 9549 9452 Sc +2.0 +17.0 −2.7 UBVRI 0.023 21,31
1999cl 282.26 +76.50 2281 2187 2605 Sb +23.0 −46.0 −6.5 UBVRI 0.038 21,31
1999cp 334.85 +52.71 2845 2737 3115 Scd +23.0 −52.0 −7.4 BVRI 0.024 28
1999cw 101.77 −67.91 3725 3863 3380 Sab −2.0 +21.0 +24.0 UBVRI 0.036 21
1999da 89.73 +32.64 3806 4059 3748 E +1.0 −71.0 −8.7 BVRI 0.056 27,32
1999dk 137.35 −47.46 4485 4654 4181 Sc +26.0 +4.0 −0.9 UBVRI 0.054 10,32
1999dq 152.83 −35.87 4295 4436 4060 Sc −6.0 −4.0 −10.6 UBVRI 0.110 21,27
1999ee 6.50 −55.93 3422 3451 3163 Sbc −10.0 +10.0 −9.5 UBVRI 0.020 33
1999ef 125.72 −50.09 11733 11920 11402 Scd −10.0 +20.0 +6.8 UBVRI 0.087 21
1999ej 130.44 −28.95 4114 4344 3831 S0/Sa −20.0 +18.0 +5.3 UBVRI 0.071 21
1999ek 189.40 −8.23 5253 5221 5278 Sbc −12.0 −12.0 −2.8 UBVRI 0.561 21,34
1999gd 198.83 +33.98 5535 5451 5775 · · · +17.0 +7.0 +3.5 UBVRI 0.041 21
1999gh 255.04 +23.73 2302 2019 2637 E +16.0 +52.0 +7.4 UBVRI 0.058 21
1999gp 143.25 −19.50 8018 8215 7806 Sb +10.0 −11.0 −13.0 UBVRI 0.056 21,27,32
2000B 166.35 +22.79 5901 5976 5977 E +19.0 −14.0 +15.7 UBVRI 0.068 21
2000E 100.89 +14.84 1415 1711 1257 Sbc −26.7 −6.3 −15.5 UBVRI 0.364 35
2000bh 293.74 +40.33 6905 6666 7248 · · · −11.0 −8.0 +5.4 BVRI 0.048 36
2000bk 295.29 +55.23 7628 7444 7976 S0 −10.0 +61.0 +12.3 BVRI 0.025 32
2000ca 313.20 +27.83 7080 6857 7352 Sbc +4.7 +0.6 −2.3 UBVRI 0.067 36
2000ce 149.10 +32.00 4888 5025 4946 Sb +17.0 +15.0 +7.0 UBVRI 0.057 21,32
2000cf 99.88 +42.16 10920 11137 10930 · · · +4.0 +3.0 +3.2 UBVRI 0.032 21,31
2000cn 53.44 +23.31 7043 7257 6958 Scd −7.0 −7.0 −7.8 UBVRI 0.057 21
2000cx 136.50 −52.48 2379 2536 2068 S0 −109.0 −23.0 −8.4 UBVRI 0.082 10,21,37,38
2000dk 126.83 −30.34 5228 5465 4931 E +9.0 −5.0 −4.5 UBVRI 0.070 21
2000fa 194.17 +15.48 6378 6313 6533 Sd/Irr +4.0 +7.0 −10.1 UBVRI 0.069 21
2001V 218.92 +77.73 4539 4478 4846 Sb +28.0 +52.0 −12.9 UBVRI 0.020 39
2001ay 35.98 +68.83 9067 9108 9266 Sb +9.0 −10.0 −3.0 UBVRI 0.019 40
2001ba 285.39 +28.03 8819 8537 9152 Sb −22.0 +19.0 −3.5 BVI 0.064 36
2001bt 337.32 −25.87 4388 4275 4332 Sb +17.1 −14.1 −8.0 BVRI 0.065 34
2001cn 329.65 −24.05 4647 4498 4628 Sc −17.9 −2.6 +4.7 UBVRI 0.059 34
2001cz 302.11 +23.29 4612 4350 4900 Sbc −31.4 −0.6 −6.3 BVRI 0.092 34
2001el 251.52 −51.40 1168 1002 1102 Scd +19.0 −22.0 −10.7 UBVRI 0.014 41
2002bf 156.46 +50.08 7254 7327 7418 Sb +4.0 +0.6 −9.9 BVRI 0.011 42
2002bo 213.04 +54.85 1293 1184 1609 Sa −14.2 +11.6 −13.4 UBVRI 0.025 34,43,44
2002cx 318.71 +69.14 7184 7085 7494 · · · −18.0 +11.0 −5.3 BVRI 0.032 45
2002er 28.67 +25.83 2568 2681 2563 Sc +4.7 −12.3 −7.5 UBVRI 0.157 46
2003du 101.18 +53.21 1912 2081 1992 Sd/Irr −13.5 −8.8 −4.7 BVRI 0.010 42

aHost-galaxy galactic longitude and latitude, from the NASA/IPAC Extragalactic Database (NED);http://nedwww.ipac.caltech.edu.

bHost-galaxy heliocentric radial velocities are taken fromNED; they are transformed to the Local Group and CMB rest frames using the formulas
also provided by NED;http://nedwww.ipac.caltech.edu/help/velc help.html#notes.

cNED host-galaxy morphological type.

dPositional offset relative to host-galaxy nucleus, from the IAU List of Supernovae;

http://nedwww.ipac.caltech.edu
http://nedwww.ipac.caltech.edu/help/velc_help.html#notes
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http://cfa-www.harvard.edu/iau/lists/Supernovae.html.

eEpoch of the first photometric observation, relative toB maximum light, in the SN rest frame.

f Milky Way dust reddening, from Schlegel, Finkbeiner, & Davis (1998).

References. — (1) Leibundgut et al. 1991; (2) Hamuy et al. 1991; (3) Buta & Turner 1983; (4) Tsvetkov 1982; (5) Phillips et al. 1987; (6) Wells
et al. 1994; (7) Lira et al. 1998; (8) Hamuy et al. 1996b; (9) Ford et al. 1993; (10) Altavilla et al. 2004; (11) Filippenko etal. 1992; (12) Leibundgut
et al. 1993; (13) Turatto et al. 1996 (14) N. Suntzeff, personal communication; (15) Riess et al. 1999; (16) Richmond et al. 1995; (17) Patat et
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2. Groundwork

Comparison of light curves from many SN Ia requires understanding and correction for a
number of effects to put the photometry on a common basis. These include corrections from
the observational photometric system to standard passbands, correction for Galactic extinction,
correction for time dilation and theK-correction. We have updated a number of these foundations
in our development of MLCS2k2.

2.1. K-correction

The stretching and shifting of spectra due to the cosmological expansion leads to changes in
measured flux observed through a fixed detector passband as a function of redshift.K-corrections
for SN Ia in B and V have been presented by Hamuy et al. (1993), based on spectra of three
objects. Kim, Goobar, & Perlmutter (1996) provide additional K-corrections inR, as well as
developing a method of “cross-filter”K-corrections used at high redshift. These methods use a
fixed set of spectra to define theK-correction for all objects, and do not include spectral energy
distribution (SED) variations arising from intrinsic differences among supernovae (either in the
detailed spectral features or in the continuum shape) or changes in in the SED due to extinction.

Nugent, Kim, & Perlmutter (2002) developed a method that accounts for these variations with
a simple, yet effective, “trick” in which both the intrinsic and extinction-related SED variations are
effected by adjusting the SED by theRV = 3.1 extinction law of Cardelli, Clayton & Mathis (1989;
hereinafter CCM89) to match the color of the SN as observed.2 This procedure is reasonably well
motivated; at early times, SN Ia are in the photospheric phase and the SED is continuum dominated,
so that adjustment of the SED by a relatively slowly varying function of wavelength, like the
CCM89 extinction law, to match the observed color will do a good job of mimicking the true SED.
At late times, much of the color variation is due, in fact, to extinction and so the adjustment is
appropriate. Furthermore, the adjustment is done using a color “local” to the spectral region being
adjusted, minimizing any adverse effects. The difference in theK-correction accounting for these
color variations and assuming a constant color for all objects is typically small (generally. 0.1
mag), but systematic. Nugent et al. (2002) show the efficacy of this color-based procedure.

Our concern in this paper is for accurateK-corrections at low redshift (z . 0.1), so we restrict
our attention toK-corrections within each passband, not the cross-filterK-correction. We have
implemented the Nugent et al. (2002) procedure using a sample of 91 SN Ia spectra covering phases
from−14 to+92 days past maximum light, compiled from a number of sources, including archival
IUE and HST data, Keck and Lick Observatory SN Ia spectra fromUC Berkeley (Filippenko

2Here we use the extinction law to adjust the SED redderor bluer, to match the observed SN color.
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1997), and unpublished spectra from the CfA SN Ia follow-up program (Matheson et al. 2007, in
preparation). Of these, 57 spectra extend far enough to the red to cover theI passband, while 32
spectra cover theU passband in the blue. The number of spectra that cover theU-band decreases
quickly as the spectra are artificially redshifted to calculate theK-correction; however, of the 133
SN Ia described here, the maximum redshift for which there are U observations is onlyz ≃ 0.06,
meaning that is the extent to which we need to calculateKUU .

To derive theK-corrections, the basic procedure is as follows. For each ofUBVRI (we adopt
the standard Bessell 1990 passbands), we choose standard colors including that passband (specif-
ically, for U: U−B; B: U−B andB−V; V: B−V, V−R, andV−I; R: V−R andR−I; I: V−I and
R−I). Then for a particular combination of passband and color, we calculateK-corrections in that
passband, such that the spectra are forced to take on a range of observed colors, using the CCM89
extinction law to adjust the spectra to any particular color. Thus, we tabulate theK-correction as
a function of three parameters: epoch (i.e., days after maximum light), redshift and color. We
measure the colors in the observer frame, so that for example, to determine theK-correction in the
V-band for a supernova at maximum light at redshiftz = 0.05 with an observedB−V= 0.0 mag,
we have taken our maximum light spectra, redshifted them toz = 0.05, adjusted them using the
CCM89 extinction law to haveB−V= 0.0 as measured with synthetic photometry, and calculated
the K-correction for that adjusted spectrum. In this example, the answer isKVV = −0.04± 0.02
mag, where the uncertainty is measured from the scatter among the individual spectra about a
smooth curve. If the observed color had been redder, e.g.,B−V= 0.5 mag, thenKVV = 0.06± 0.01
mag.

The advantage of calculating theK-correction as a function of observer-frame color (as op-
posed to the SN rest-frame color) is that no iteration is thenrequired: the measured color directly
determines the SN SED in the observer frame. However, in other applications, for example, if one
wants to transform rest-frame templates (with known rest-frame colors) to the observer-frame, it
is more convenient to tabulate theK-correction as a function of rest-frame color. For the present
sample, all SN have well-measured (to better than∼0.1 mag) observer-frame colors, so we can ap-
ply theK-corrections to the data directly, and expediently fit the SNin the rest frame. Though not
used here, we are also developing an implementation of MLCS2k2 to take rest-frame model light
curves, convert them into the observer frame, and then fit theobserved data directly. That approach
is more appropriate, e.g., for high-redshift observationswhere observer-frame color information is
of lower quality andK-corrections based on the model light-curve colors should be used.

In Figure 1 we show the derivedK-corrections in theU-band. It is interesting to note that
the K-corrections inU at maximum light are quite significant (∼0.1 mag), even for very modest
redshifts. Ignoring theK-correction would lead to spurious correlations of supernova parame-
ters (including those that are nominally distance-independent, such as decline rate or color) with
redshift and distance.
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Fig. 1.— K-corrections in theU-band. The left panel showsKUU as a function of supernova age
at a redshift ofz = 0.03. The solid line corresponds to an observed maximum-lightU−B = −0.35
(corresponding to a SN rest-frame color at maximum lightU−B = −0.50). The dashed lines above
and below the solid line correspond to SN Ia that are 0.2 mag redder and bluer, respectively, in
U−B at all epochs. The crosses indicate the phases of the spectraused in the calculation. The
right panel showsKUU at maximum light as a function of redshift, assuming a rest-frame color of
U−B = −0.50. The shaded region indicates theK-correction uncertainty. The “kinks” in the right
panel occur when individual spectra (out of 32 total) drop out of the K-correction calculation as
their wavelength coverage ceases to encompass the entireU-band.
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Nugent et al. (2002) caution against using the CCM89 extinction law adjustment procedure
applied to normal SN Ia spectra in determiningK-corrections for SN 1991bg-like objects, whose
strong Ti II spectral features dominate the photometric colors (particularly inB), even at early
times. We have calculatedK-corrections independently for this class of SN Ia, a small minority
of the entire sample, using a separate spectral sample consisting of only 1991bg-like objects. The
affected objects are SN 1986G, 1991bg, 1992K, 1992bo, 1993H, 1997cn, 1998bp, 1998de, 1999by,
1999da, and 1999gh.

2.2. Extinction

Extinction by dust along the line of sight to a SN Ia is recognized by its reddening effect on the
SN colors. As discussed by Phillips et al. (1999) and Nugent et al. (2002), the evolution of the SN Ia
SED over time leads to variations in the observed extinctionin any given passband. Furthermore
the extinction itself alters the SED such that the reddeningis a nonlinear function of the total
extinction. These effects are small (typically at the level of a few hundredths of amagnitude), but
systematically affect the observed light curves in a way that can impact the luminosity/light-curve
shape relationship and derived distances. In this section we describe in some detail the methods
we have used to account for host-galaxy extinction in MLCS2k2.

The dust extinction along a particular line of sight is typically parameterized by the extinction
in a given bandX, AX and by the amount of reddening, given by the color excess, typically E(B−V).
Following Phillips et al. (1999) and Nugent et al. (2002), wedistinguish between the “true” red-
deningE(B−V)true which depends only on the dust itself (and is calculated fromthe effects of that
dust on idealized stellar spectra; CCM89), and the “observed” reddeningE(B−V)obs ≡ AB − AV ,
which varies with time as the supernova spectrum evolves. From these, we can construct the ratio
Rtrue

X ≡ AX/E(B−V)true, which varies in time as the numerator varies, andRobs
X ≡ AX/E(B−V)obs, for

which both the numerator and denominator vary in time. We have calculated both of these ratios
similarly to Phillips et al. (1999) and Nugent et al. (2002),by simulating the effects of extinction
on the sample of 91 spectra described in§2.1, using theRV = 3.1 extinction law of CCM89,3

as modified by O’Donnell (1994), and synthetic photometry through the Bessell (1990) standard
passbands.4

We present our calculations ofRtrue
X andRobs

X in Figures 2 and 3, respectively. We find a good
match in general to the results of Nugent et al. (2002) and Phillips et al. (1999), which is not

3We have also explored using the extinction law presented by Fitzpatrick (1999), with similar results.

4Previous incarnations of MLCS used extinction coefficients tabulated for the JohnsonR andI passbands, rather
than the Kron/Cousins passbands. We have rectified this here.
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Fig. 2.— Variation ofRtrue
X ≡ AX/E(B−V)true in UBVRI as a function of supernova phase. The

open circles represent the measurement from the individualspectra and the heavy solid line is the
smoothed representation. The dotted and dashed lines show the variation ofRtrue

X with the total ex-
tinction (cf. Phillips et al. 1999, their Figure 2). The dashed line corresponds toE(B−V)true = +1.0
mag relative to the solid line (which was calculated forE(B−V)true approaching zero). The dotted
line corresponds toE(B−V)true = −0.5 mag relative to the solid line (for illustration only, as it
would be unphysical unless the extinction zeropoint for thesolid line was significantly underesti-
mated).
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Fig. 3.— Same as Figure 2, except showing the variation ofRobs
X ≡ AX/E(B−V)obs. Note that the

y-axis ranges have been increased in this figure, to encompass the larger variations inRobs
X , and that

Robs
B = Robs

V + 1 by definition.
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surprising, as we have many of the input spectra in common. The figures show the time variation
of these two ratios as well as its variation over two magnitudes inE(B−V)true. Both of these ratios
have their uses, depending on whether one knows the extinction a priori (for instance, using a
Galactic reddening map) or is measuring it from the observedSN colors. Because we have used
the SED of SN Ia themselves to calculate these quantities (and their time variation), it is preferable
to use these results rather than those from standard filter tables (e.g., Table 6 of Schlegel, Finkbeiner
& Davis 1998).

So far we have restricted ourselves to the standardRV = 3.1 extinction law of CCM89, but
we would like our distance measuring technique to allow for variations in the properties of the
dust. CCM89 have shown that in the optical passbands, dust inour Galaxy follow extinction
laws that can be expressed in termsRV .5 Clearly, using extinction laws with different values of
RV will lead directly to variations inRtrue

X andRobs
X . The variation with the total extinction itself

adds further complications and makes using these ratios cumbersome. For instance, calculating
Robs

I ≡ AI/(AB − AV) involves three terms, each varying individually with epoch, total extinction
and extinction law.

To make things simpler, we have chosen to work in the more natural space ofAX rather than
using color excesses to parameterize the extinction. This is convenient because we fit the light
curves in each passband directly, rather than fitting color curves, an approach that does not require
light curves to have multiple color measurements at each epoch. Secondly, the extinction laws
themselves are better characterized in ratios of extinctions, e.g.,AB/AV , rather than in ratios of
extinctions to color excesses.6

The first part of this framework is to separate out the time dependence of the extinction. For
each passbandX, we define the quantity,

~ζX ≡
~AX

A0
X

, (1)

where we denote quantities that are functions of SN phase with vector arrows (i.e.,~ζX = ~ζX(t)),
andA0

X is defined as the extinction in passbandX at maximum light inB. Thus, ~ζX(t = 0) ≡ 1
by definition (all times are defined relative to maximum lightin B). In Figure 4 we show our
calculation of ~ζX in UBVRI . The useful result is that~ζX captures all of the time dependence in
the extinctionand is insensitive to both the total extinctionE(B−V)true and the extinction lawRV .
This point is also illustrated in Figure 4, where the dark gray bands show the variation in~ζX over

5We adopt the notation that without a superscript “true” or “obs”,RV corresponds to theRV of CCM89, i.e., derived
from photoelectric measurements of Galactic stars.

6This point is made explicitly by CCM89 who note that “There are some relationships which emerge more clearly
whenA(λ)/A(V) is considered than when normalization byE(B−V) is used.”
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the very wide range of 3 magnitudes ofE(B−V)true and the light gray bands show the variation of
a wide range ofRV from 1.7 to 5.7 (including the full variation inE(B−V)true). While the figure
shows some differences in~ζX at levels greater than a few percent (for instance, inI at early times),
these are only realized for extreme values of bothRV andE(B−V)true. We can then confidently
fix ~ζX as shown by the heavy solid lines in the figure, independent ofthe reddening law and total
extinction.

With the time dependence separated, we can relate the extinction in any passband at any
epoch to the maximum light extinctionA0

X in that passband. The maximum light extinctions in the
different passbands are interrelated and we can define the relations between these (currently, five)
parameters as a function of the total extinction and the reddening law. CCM89 show that the ratio
AX/AV is a simple linear function of (1/RV). We have calculated this relationship at maximum
light explicitly using our sample of spectra near that epoch, and fit for the coefficientsαX andβX,
defined by

A0
X

A0
V

= αX +
βX

RV
. (2)

The results are presented graphically in Figure 5, and listed in Table 2 (which also shows explicitly
the relations for anRV = 3.1 extinction law). Furthermore, the figure illustrates thatA0

X/A
0
V is a

very weak function ofE(B−V)true (in most cases the three open circles are indistinguishable), and
we are justified in ignoring the dependence on the total extinction.

In the framework developed, then, we parameterize the extinction by two numbers:A0
V , cor-

responding to the extinction in theV passband at maximum light, andRV , describing the shape of
the extinction law. The fixed coefficientsαX andβX provide the maximum light extinctions in other
passbands, and the vectors~ζX contain the time variation. While the parameterization in terms of
Rtrue

X andRobs
X is still useful for certain tasks (see below), we switch to this new framework in the

MLCS2k2 fits.

Table 2. Maximum Light Extinction Coefficients

A0
X/A

0
V = αX + βX/RV

Passband (X) αX βX αX + βX/3.1

U 0.964 1.716 1.518
B 1.016 0.919 1.313
V 1.000 0.000 1.000
R 0.935 −0.300 0.839
I 0.767 −0.534 0.595
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Fig. 4.— Calculation of~ζX ≡ ~AX/A0
X in UBVRI . The dark solid line shows the result forRV = 3.1

andE(B−V)true approaching zero. The dark gray shaded area shows the range of variation in ~ζX
over 3 magnitudes inE(B−V)true, while the light gray shaded area indicates the variation in~ζX over
that reddening range and over the range 1.7 ≤ RV ≤ 5.7.
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Fig. 5.— Variation ofA0
X/A

0
V as a function ofR−1

V . The sold lines indicate the best linear fit. The
open circles show the calculated points; for each passband andRV there are three open circles, with
E(B−V)true ≃ −0.5, 0.0, and+2.5 mag, showing the small differences in the relations as a function
of the total extinction.
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2.3. Separating Reddening and Intrinsic Color

To define the training set that yields our desired template light curves, we need an estimate of
the extinction in the host galaxy of each object. Various approaches are possible, e.g., assuming
that SN Ia in early-type host galaxies or the bluest SN Ia define an extinction-free sample. Knowing
the “zeropoint” of the extinction (i.e., the true, unreddened color of a SN Ia) is not strictly necessary
if we are interested only in relative distances (or in tying the SN Ia distances to another set, such
as the Cepheid scale), but it becomes essential if we want to use the positivity of the extinction
(dust cannot brighten a source or make it appear bluer) as a constraint on our derived distances. We
employ the observational results of Lira (1995), who noticed that the late time (t & +30 days)B−V
color evolution of SN Ia was remarkably similar, regardlessof light curve shape near maximum
light. SN Ia undergoing this transition to the nebular phasealso show very similar spectra (e.g.,
see Filippenko 1997). Phillips et al. (1999) used this “LiraLaw,” (B−V)0 = 0.725− 0.0118(tV −

60), giving the intrinsic color in terms of the number of dayspastV maximum light, to measure
extinctions and to constrain theB−V andV−I maximum light colors of SN Ia (as a function of
∆m15). The Lira Law as quoted was derived from a fit of late-time photometry of four objects (SN
1992A, 1992bc, 1992bo and 1994D), estimated to be free of host-galaxy extinction. Phillips et
al. (1999) estimate that the intrinsic dispersion about therelation is 0.05 mag.

We have attempted to check the Lira relation with another approach. Rather than trying to
choose an extinction-free subsample of the data, we use all the data we can. Beginning with the
sample of 133 SN Ia described above, we have corrected the photometry for Galactic extinction,
using the reddening maps of Schlegel et al. (1998) and our calculation of Rtrue

X above, with the
assumption that the Galactic component is described by anRV = 3.1 extinction law. We have also
applied theK-correction (see§2.1) and corrected for time dilation to bring the data to the SN rest
frame. We have then constructedB−V color curves for the sample, and attempted to measure the
late-time color evolution. We find that the Lira late-timeB−V slope of−0.0118 mag day−1 does an
excellent job of fitting the bulk of the observations.7 We thus fix this slope and fit a straight line to
all theB−V observations between 32 and 92 days pastB maximum light to determine the intercept,
BV35 (which we reference to a fiducial epoch oft = +35 days) and its observational uncertainty
σBV35. Of the 133 objects listed in Table 1, 28 have no useful late-time color information, while
an additional 23 have only poor data unsuitable for a good measurement, due either to too few
late time points or points with large uncertainties. TheBV35 measurements for the remaining 82
objects are listed in Table 3 and presented in a histogram in Figure 6.

We assume that this distribution is a result of three independent factors: first, observational
uncertainty, second, an intrinsicB−V color with an unknown scatter, and third, reddening by dust

7Using the 31 color curves of highest quality, we find a mean slope of−0.0123 mag day−1 with a standard deviation
of 0.0011 mag day−1.
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Table 3. SN Ia Late-Time Colors

SN Ia BV35 σBV35 SN Ia BV35 σBV35

mag mag mag mag

1972E 1.092 0.028 1997bp 1.305 0.073
1980N 1.139 0.027 1997bq 1.216 0.026
1981B 1.105 0.042 1997br 1.362 0.030
1986G 1.682 0.029 1997cw 1.521 0.042
1989B 1.438 0.040 1998V 1.123 0.031
1990O 1.145 0.044 1998ab 1.215 0.029
1990T 1.174 0.027 1998aq 1.099 0.026
1990Y 1.326 0.033 1998bp 1.127 0.029
1991S 1.177 0.042 1998bu 1.384 0.026
1991T 1.223 0.028 1998de 1.195 0.044
1991ag 1.121 0.029 1998dh 1.214 0.032
1991bg 1.040 0.031 1998dk 1.284 0.041
1992A 1.036 0.029 1998dm 1.461 0.031
1992J 1.148 0.048 1998es 1.166 0.042
1992K 1.045 0.034 1999aa 1.075 0.027
1992P 1.152 0.031 1999ac 1.142 0.029
1992al 1.091 0.026 1999aw 0.943 0.049
1992bc 0.981 0.028 1999by 1.067 0.027
1992bg 1.095 0.046 1999da 1.308 0.074
1992bl 1.006 0.046 1999dq 1.267 0.037
1992bo 1.036 0.072 1999ee 1.415 0.026
1993H 1.041 0.041 1999ek 1.262 0.052
1993L 1.283 0.045 1999gd 1.490 0.078
1993O 1.071 0.029 1999gh 1.100 0.026
1993ae 1.022 0.029 1999gp 1.166 0.035
1993ag 1.156 0.050 2000B 1.130 0.044
1994D 0.970 0.034 2000bh 1.176 0.026
1994M 1.233 0.029 2000bk 1.205 0.027
1994Q 1.154 0.039 2000ca 1.040 0.029
1994ae 1.055 0.027 2000cf 1.167 0.026
1995D 1.153 0.026 2000cx 0.827 0.025
1995E 1.857 0.089 2000dk 1.007 0.082
1995ac 1.117 0.037 2000fa 1.159 0.047
1995ak 1.331 0.033 2001V 1.144 0.026
1995al 1.225 0.032 2001bt 1.314 0.035
1995bd 1.274 0.033 2001cn 1.272 0.032
1996C 1.107 0.049 2001cz 1.221 0.032
1996X 1.083 0.035 2001el 1.358 0.027
1996bl 1.161 0.047 2002bo 1.450 0.027
1997E 1.111 0.031 2002er 1.233 0.030
1997Y 1.148 0.031 2003du 1.050 0.026

Note. — Determined from a linear fit to SN rest-frameB−V color
measurements between 32 and 92 days pastB maximum light, with
(B−V)(t) = BV35− 0.0118(t − 35). See text for details.
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Fig. 6.— Histogram of 82 SN Ia with well-measured late-timeB−V color evolution. The data
were corrected for Galactic extinction and theK-correction, and referenced to+35 days afterB
maximum, adopting a late-time color evolution slope of−0.0118 mag day−1. The maximum-
likelihood fit model is shown as the solid curve; it is the convolution of the dotted curves shown
(at an arbitrary scale for clarity). SN 2000cx, a clear outlier, was not included in the fit.
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in the host galaxy. We then model the distribution of the intrinsic component as a Gaussian with
mean (B−V)+35 and standard deviationσB−V (which subsumes the observational errors), and the
distribution of the reddening as an exponential with scale lengthτE(B−V), such that the probability
density of the reddening peaks at zero, and falls to 1/e of the peak atτE(B−V). The probability
distribution function of the sum of these two components is just the convolution of the individual
distributions, and we perform a maximum-likelihood analysis using each point to determine the
best-fit model parameters. The results are also shown in Figure 6, with the convolution overplot-
ted on the histogram and the components inset. The maximum-likelihood model parameters are
(B−V)+35 = 1.054± 0.018 mag,σB−V = 0.062± 0.012 mag, andτE(B−V) = 0.138± 0.023 mag,
where the uncertainties were determined by bootstrap resampling of the data set.

There are a couple of cautionary points about this result. First, we have excluded from the
fit the very peculiar SN 2000cx (Li et al. 2001), which is a clear outlier in the histogram and
whose light curve (but not peak luminosity) is significantlyunlike other SN Ia (Li et al. 2001; Jha
et al. 2006). In addition, because the SN Ia we study were discovered in a variety of supernova
searches, they do not comprise a complete or well-defined sample, and thus may be biased with
respect to the true distribution of SN Ia late-time color. Inparticular, there may be a significant
population of heavily obscured SN Ia that are not present in the sample, leading to an underestimate
of τE(B−V), assuming an exponential distribution is valid at all (Hatano, Branch, & Deaton 1998).
While our derived value forτE(B−V) is valid for the sample we study and whose distances we derive
in this paper, other supernova surveys with flux or volume limited samples, or searches in infrared,
may find differing numbers heavily extinguished SN Ia and different estimates ofτE(B−V).8

Fortunately, we are chiefly interested in (B−V)+35 andσB−V , and it is unlikely our estimates
of these are significantly biased. Our results with this maximum likelihood method are in good
accord with the Lira relation (which predicts (B−V)+35 ≃ 1.044) and its estimated dispersion. Our
approach has the advantage of using all normal SN Ia to determine the intrinsic color zeropoint,
rather than just the bluest objects. As Figure 6 shows, in addition to having low reddening, the
bluest objects are also intrinsically bluer than the mean unreddened color. Part of the “intrinsic”
color scatter,σB−V is due to observational uncertainty in the color measurement. Based on our
color measurements, with an average uncertainty of 0.037 mag, we can remove this component
and estimate the true intrinsic color scatterσ(B−V)int = 0.049 mag.9

8If, for example, we truncate the observed distribution to eliminate the reddest objects withBV35 ≥ 1.5 mag, the
derived scale length isτ = 0.104± 0.021 mag.

9Nobili et al. (2003) suggest that the distribution ofB−V observations of unextinguished SN Ia near 35 days past
maximum can be explained entirely by measurement errors, with no intrinsic component to the dispersion. However,
here we have combined late-time data from 32 to 92 days into one measurement using the Lira law, and this combi-
nation reduces the observational uncertainty. Even with a conservative estimate of a positive correlation among the
late-time data for a given SN, our results require an intrinsic late-time color dispersion with a significance& 3-σ.
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Our model then establishes independent distributions for both the intrinsic color of SN Ia and
the reddening. Intrinsically, SN Ia at 35 days past maximum (and even later times, if corrected
by the Lira slope to the reference+35 day epoch) have aB−V color distribution which can be
described by a Gaussian with a mean of 1.054 mag and standard deviation of 0.049 mag. In
our sample, the distribution of host-galaxy reddening by dust E(B−V) is well described by an
exponential with a scale length of 0.138 mag. The observed color is the sum of the intrinsic color
and the reddening.

A straightforward application of Bayes’s theorem yields the prescription to turn the model
around: determining estimates of the reddening (and intrinsic color) from a measurement of the
observed color. For notational simplicity, we defineE ≡ E(B−V) as the host-galaxy reddening,L
as the intrinsic late-timeB−V color, andO as the observed late-timeB−V color, withO = E + L.
Bayes’s theorem says that the conditional probabilityp(E | O) ∝ p(O | E)p(E), wherep(E) is just
the reddening distribution derived above,p(E) ∝ exp(−E/0.138), forE ≥ 0. The other term, the
probability of measuring an observed colorgiven the reddening,p(O | E), is simply equivalent to
p(L = O − E), the probability that theintrinsic color (which has a Gaussian distribution, as above)
is that which added toE gives the observed color,O.

The conclusion is that for a SN Ia that has a measured late-time B−V color BV35 with an
observational uncertaintyσBV35 (with all quantities measured in magnitudes), the probability dis-
tribution of the host-galaxy reddeningE(B−V), again calledE for notational simplicity, is given
by

p(E | BV35, σBV35) ∝
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(3)

This is a generalization of the Bayesian filter of Riess, Press, & Kirshner (1996a), where
our model now includes the uncertainty caused by the intrinsic scatter in SN Ia late-time color in
addition to the observational uncertainty. We use equation3 with the data in Table 3 to get the
initial host-galaxy reddening estimates required in training MLCS2k2.

The intrinsic scatter in the late-time colors (0.049 mag) dominates the uncertainty in the mean
unreddened color from the maximum likelihood fit (0.018 mag), and thus we strongly urge that
“negative” extinction be disallowed in any model. The idea of negative extinctions (because of
a color zeropoint that is estimated redward of the true colorzeropoint) is a convenient fiction,
but only if the intrinsic color scatter is smaller than the zeropoint uncertainty. Here we have the
opposite case; blue SN Ia (withBV35 = 1.0 mag, for example) are blue because of the intrinsic
color variation, not because they are the only “truly” unextinguished objects. Thus, “correct-
ing” them with a negative extinction is a mistake. As long as there is no systematic error in
the mean unreddened color approaching the level of the intrinsic scatter, the mean of equation 3,
∫ ∞

0
p(E | BV35, σBV35)EdE, provides anunbiased estimate of the host-galaxy reddening.
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3. Model

We are now in a position to define our light curve model. For each passband,X, we fit the
observed light curves (corrected for Galactic extinction,K-correction, and time dilation),~mX as
follows (arrowed quantities span the SN rest-frame phase):

~mX(t − t0) = ~M0
X + µ0 + ~ζX (αX + βX/RV) A0

V +
~PX∆ + ~QX∆

2, (4)

wheret0 is the epoch of maximum light inB, ~M0
X are the absolute magnitudes of the fiducial SN

Ia, µ0 is the true distance modulus,RV andA0
V are the host-galaxy extinction parameters (§2.2),∆

is the luminosity/light-curve shape parameter, and~PX and ~QX are vectors describing the change in
light curve shape as a (quadratic) function of∆. There are five “free” parameters in the model:t0,

µ0, ∆, A0
V , andRV . As in previous versions of MLCS, we solve for the optimal vectors ~M0

X, ~PX, and
~QX using a training set for which we estimate initial values of the free parameters based on relative

distances from the Hubble Law.

Given a training set and solution for the optimal vectors, weconstruct an empirical model
covariance matrixS that incorporates the variance and covariance in the residuals of the training set
data from the model (minus the variance and covariance in thetraining set data itself). Following
Riess et al. (1998a), the diagonal elements of theS matrix are derived from the variance about
the model, while the off-diagonal elements are estimated from two-point correlations (in the same
passband at different epochs, in different passbands at the same epoch and in different passbands
at different epochs).

Armed with the template vectors and the model covariance matrix, we can apply the model.
Along with the light curve observations~mX, conscientious observers provide a covariance matrix
of “noise”, N, albeit typically only a diagonal one consisting of the variance of each data point
(even though SN light curve data can be highly correlated, for instance in the fact that all the light
curve points are usually referenced to the same few field comparison stars). We correct these data
for Galactic extinction, and incorporate the uncertainty estimate of Schlegel et al. (1998), whereby
σ (E (B−V)true) ≃ 0.16× E(B−V)true, updating both the diagonal and off-diagonal elements ofN
(the uncertainties in the Galactic extinction correction are highly correlated, but generally small).
We also apply theK-correction (§2.1), and incorporate theK-correction uncertainty in the diagonal
elements of N (unfortunately we do not have enough data to estimate theK-correction correlations)
and correct for time dilation.

We find the best-fit model parameters viaχ2 minimization, with

χ2 = ~r TC−1~r, (5)

where~r is the vector of residuals (in all bands) for a given set of model parameters, andC =
S +N. We use a downhill simplex method (amoeba; Press et al. 1992)to perform the minimization
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(though linear algebra suffices in solving forµ0 andA0
V , if the other model parameters are fixed)

and determine their best-fit parameters. Because theS matrix is empirically determined from the
training set, application of the model to objects in the training set will necessarily have a minimum
reducedχ2

ν (≡ χ2 per degree of freedom) close to unity, but in applying the model to other objects,
the minimumχ2

ν still yields useful goodness-of-fit information (indicating how similar the light
curves of the new object are to those in the training set, given the nature of the model).

We have also incorporated the ability to add priors on any of the model parameters directly into
the fit. The previous versions of MLCS, for instance, used a Bayesian filter requiring the extinction
to be non-negative, but this was enforced after the best fits were determined. The advantage of that
approach was convenience and expediency, but at the expenseof ignoring correlations among the
parameters. Those versions of MLCS usedµV , the distance modulus uncorrected for extinction, as
the basic distance model parameter rather thanµ0 = µV −AV , in order to minimize this undesirable
correlation, thus making the Bayesian filter simple and effective. However, there are situations
in which one might like to include other prior information into the fit. For example, a sparsely-
sampled light curve may not allow for a good determination ofthe time of maximum light, but we
may have other information about the time of maximum from spectroscopy (Riess et al. 1997a).
In the extreme limit of the “snapshot” method, (Riess et al. 1998b), spectroscopy could be used to
determine prior constraints on botht0 and∆. Alternately, we may have observations in additional,
non-modeled passbands (such as in the near-infrared), which impose prior constraints onA0

V or RV .
Incorporating priors, ˆp, into the fit is straightforward, we simply adjust theχ2 to

χ2 = ~r TC−1~r − 2 ln p̂(t0, µ0,∆, A
0
V ,RV), (6)

taking care to reinterpret this “χ2” in the proper way when estimating the goodness of the model fit
(which depends only on the first term, as opposed to the parameter uncertainties). This procedure
allows the parameters to be “naturally” filtered during the fit.

4. Training

The training set is the most critical part of the analysis; itrequires objects with accurate esti-
mates of the model parameters, in order to construct the template vectors and covariance matrix.
As in Riess et al. (1998a), we use the Hubble law to determine precise relative distances, thus
useful objects in the training set need to have recession velocities that are dominated by cosmo-
logical expansion, not peculiar motions. The objects also need to have well-measured light curves
at maximum light so thatt0 andVmax (to be used in determining∆, as below) can be reliably de-
termined. Finally, we require accurate host-galaxy extinction estimates for the training set objects.
This estimate comes from well-sampledB andV light curves at the epochs past+35 days when the
intrinsic color is not a strong function of luminosity, as described in§2.3. Ideally, we would also
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like estimates of the host-galaxy extinction lawRV for each SN, but these are not easily determined
a priori, and values based on the SN light curves themselves would require knowledge of the in-
trinsic colors we are trying to determine! To avoid this conundrum, then, we restrict the initial
training sample to objects not very significantly reddened (as determined from theB−V color at
∼35 days past maximum), so that variation inRV does not have a large effect, allowing us to fixRV

= 3.1 for the initial training set.

Our initial training set consists of 37 SN Ia, withcz ≥ 2500 km s−1 (measured in the
CMB frame) and well-sampled light curves beginning earlierthan 10 days past maximum light:
SN 1990O, 1990af, 1992P, 1992ae, 1992al, 1992bc, 1992bg, 1992bl, 1992bo, 1992bp, 1992br,
1993H, 1993O, 1993ag, 1994M, 1995ac, 1996C, 1996bl, 1997E,1997Y, 1997bq, 1998V, 1998ab,
1998bp, 1998de, 1998es, 1999aa, 1999ac, 1999da, 1999gp, 2000ca, 2000cf, 2000dk, 2000fa,
2001V, 2001cz, and 2002er. For each SN, we initially calculate ∆ as the difference betweenV
magnitude at maximum light (corrected for host-galaxy extinction) and the Hubble line given the
host-galaxy redshift. We assign an uncertainty in∆ from the quadrature sum of the uncertainty
in the direct fit ofVmax, the extinction uncertainty and a distance uncertainty based on a peculiar
velocity uncertainty ofσ = 300 km s−1. These initial guesses of∆ span a range of over two
magnitudes, and the sample includes a wide range of over- andunder-luminous objects.

From the initial guesses of the model parameters and uncertainties, we derive the best fit

vectors, ~M0
X, ~PX, and ~QX, as well as the model covariance matrixS , all of which are sampled daily

over the range−10≤ t ≤ +90 days pastB maximum, where the data are constraining. With these
vectors, we can apply this initial model to our larger sampleof supernovae; deriving new estimates
of ∆ and A0

V while constraining the distance moduli to their Hubble Law estimates (within the
uncertainties listed above). Iterating this procedure leads to convergence on a consistent set of
model parameters, template vectors and a model covariance matrix.10

In Figure 7, we present the one-parameter family of unreddened template light curves in
UBVRI over a wide range of luminosity, based on the final template vectors derived in the training
process. The characteristic result that intrinsically brighter SN Ia (low∆) have broader light curves
is clearly established in all passbands. We note that while∆ is originally estimated by the relative
V-band magnitude difference at maximum light, during the iterative training the meaning of∆

10In principle, this procedure could artificially decrease the scatter in our distance measurements, if the contribution
of individual SN Ia to the templates “circularly” affected their fits when the model is applied. In practice, however, the
templates are derived from a large enough number of objects that this effect is negligible. We have further tested this
by applying the model derived only from the initial trainingset to the remaining objects, as well as by partitioning the
full sample and iteratively training the model on one half ofthe data, and then applying it to the other half. In all cases
the scatter in the Hubble diagram of the objects not used in the training set is significantly decreased, typically from
∼0.5 mag to.0.2 mag. We thus choose to retain the largest training set sample we can to most robustly determine the
templates and, importantly, their associated model uncertainty.
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changes. It should be viewed simply as a unitless fit parameter that describes the family of light
curves, and can differ significantly from its original value for a given supernova. In particular,
it should not be subtracted directly fromVmax to obtain a corrected peak magnitude, though this
has been a convenient usage in the past.11 The fiducial MLCS2k2∆ = 0 model light curve has
∆m15(B)= 1.07 (read directly off the B-band template) and stretch parameter,sB = 0.96 (fit as
described by Jha et al. 2006). The intrinsic absoluteV magnitude at the time ofB maximum light
is given by

MV(t = 0) = −19.504+ 0.736∆ + 0.182∆2 + 5 log

(

H0

65 km s−1 Mpc−1

)

mag. (7)

The MLCS2k2 relations also allow us to determine the intrinsic colors of SN Ia with varying
luminosity at any epoch. In Figure 8, we show a sample of the color relations inU−B, B−V, and
V−I, at maximum light and 35 days after maximum. Our fiducial∆ = 0 SN Ia hasU−B = −0.47
mag,B−V = −0.07 mag,V−R = 0.00 mag, andV−I = −0.29 mag, at the time ofB maximum
light. The intrinsic dispersion in these colors is capturedin the model covariance matrix. Because
the intrinsic colors are determined by the model at any epoch, all of the observations can be used
to constrain the extinction and∆, weighted by the observational and model uncertainties. This
is a more flexible approach than just using late-time or maximum-light relations to determine the
extinction (e.g., Phillips et al. 1999), or using colors at one specific epoch to determine the intrinsic
luminosity and extinction (e.g., att = +12 days, as suggested by Wang et al. 2005).

5. Application

We have applied the model to our full sample of 133 SN Ia, employing priors,p̂(t0, µ0,∆, A0
V ,RV),

via equation 6. Of course, in applying the model to a SN Ia light curve we impose no prior con-
straints on the distance modulus,µ0. We requiret0 to be within±3 days of the input estimate used
to derive the time-dependent Galactic extinction and K-corrections; in cases where the fitt0 is out-
side this range or otherwise inconsistent with the input value, we start the fit over using the updated
estimate fort0. We use a uniform prior on∆ over the range−0.3 ≤ ∆ ≤ 1.6, with a Gaussian rolloff
(with σ = 0.1) on either side of that range; this restricts the fits to the range of∆ encompassed
by the training set (roughly between−0.4 and 1.7) and for which the model is valid. We do not
see objects in our sample “piling up” at these boundaries, but it will be important to check that

11The reason for this is the increased dispersion and shallower slope in SN Ia luminosity at the slowly-declining
end of the distribution, which has become clear only with thegrowing samples of SN Ia now being used to calibrate
the luminosity/light-curve-shape relationship. The iterative training for MLCS2k2 associates objects with similar light
curve shapes, which leads the model vectors away from their starting point at ~PV (t = 0) = 1 and ~QV (t = 0) = 0 to
convergence at~PV (t = 0) = 0.736 and ~QV (t = 0) = 0.182.
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Fig. 7.— MLCS2k2 intrinsicUBVRI light curve templates,~MX =
~M0

X +
~PX∆ + ~QX∆

2, shown over
a range of luminosity and light-curve shape from∆ = −0.3 (brighter) to∆ = +1.2 (fainter).
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Fig. 8.— MLCS2k2 maximum light (top panel) and late time (+35 days, bottom panel) intrinsic
U−B, B−V, andV−I colors as a function of decreasing intrinsic luminosity (increasing∆).
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application of MLCS2k2 to a new object does not require a fit that extrapolates beyond the training
set.

Additionally, we constrain the maximum light host-galaxy extinction parameterA0
V to be non-

negative, as well as incorporate the results of our determination of the SN Ia intrinsic color and
reddening distributions (§2.3). There we determined that the host-galaxy reddening distribution
was well described by an exponential with a scale length ofτE(B−V) = 0.138 mag. Because our
MLCS2k2 model parameter isA0

V , the maximum light extinction inV, we need to convert the
results based on the late-timeB−V color, multiplying byRobs

V (to change fromE(B−V) to AV ) and
dividing by ζV . With average late-time values of these quantities, we derive our final prior on the
maximum light host-galaxy extinction, ˆp(A0

V) ∝ exp(−A0
V/0.457 mag) forA0

V ≥ 0. Our results
show little sensitivity to the exact value for the exponential scale in the denominator.

Finally, we use a prior constraint onRV estimated from its distribution over multiple lines of
sight to stars in the Galaxy (CCM89). For ˆp(RV), we adopt a functional form that is Gaussian
in R−1

V with a mean〈RV〉 = 3.1 and standard deviation (〈R2
V〉 − 〈RV〉

2)1/2 = 0.4. The choice of a
prior on RV has a significant effect on the best-fit parameters of heavily extinguished SN Ia,and
we discuss this issue more fully below (§6.4).

To fit the MLCS2k2 model, we first calculateχ2 (equation 6) over a four-dimensional grid of
(t0, µ0, ∆, A0

V ), with a fixedRV = 3.1. Because variation in the reddening law has only a very small
effect on the measured distance if the extinction is low, we expand this to a five-dimensional grid
(includingRV as a fit parameter) just for those objects which showA0

V > 0.5 mag in the initial fit.
Though mappingχ2 over a large grid is computationally expensive, it allows usto fully explore
our non-linear model, and makes evident, for example, objects which could be well fit in separate
regions of parameter space or otherwise have a complicatedχ2 surface (which can occur especially
for SN Ia with sparse photometry).

In Figure 9 we show example light curve fits for SN 2000fa and SN1999gh (Jha et al. 2006),
whose light curves are typical in the nearby SN Ia sample. SN 2000fa has a slightly broader light
curve than average and is moderately extinguished by dust inits host galaxy, while SN 1999gh is
a fast-declining, subluminous SN Ia with little host extinction. The shaded regions in the figure
show the model uncertainty (more precisely, the square rootof the diagonal elements ofS ) which
generally dominates the uncertainty in the data.

From the likelihood grid we calculatep(t0, µ0,∆, A0
V ,RV) = exp(−χ2/2), the posterior prob-

ability density function (pdf). We marginalize this distribution to determine the pdfs of the pa-
rameters of interest. Though the full surface is difficult to visualize or present, we show all of
the two-dimensional marginalizations of the probability densities for SN 2000fa and SN 1999gh
in Figure 10, clearly illustrating bivariate correlationsamong the model parameters. Finally, in
Figure 11 we show the one-dimensional pdfs for each of the model parameters. Our best estimate
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Fig. 9.— MLCS2k2 fits of SN 2000fa and SN 1999gh. The SN rest-frameUBVRI photometry
(filled circles) is shown with the best-fit model light curves(solid lines), as well as the model un-
certainty (shaded regions) derived from the diagonal elements of the model covariance matrix. The
supernovae are well fit, even with gaps in the light curves anda lack of observations at maximum
light.
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of each parameter is given by themean of these distributions (not the mode/peak), and their stan-
dard deviations give an estimate of the uncertainty. Note that in some cases these distributions
are asymmetric or otherwise non-Gaussian (for example,p(A0

V ) for SN 1999gh), so the mean and
standard deviation do not always provide a complete description. In typical cases, however, the
distribution ofµ0, the parameter of primary interest, can be well approximated by a Gaussian.
While derivative calculations based on these parameters (fitting the Hubble diagram, for example)
should formally employ the full pdf, we have found that aftercombination of just a few objects,
the formally correct (but computationally intensive) method yields results indistinguishable from
those based on the means and standard deviations.

We present the full results of the MLCS2k2 fits to our SN Ia sample in Table 4. The tabulated
values correspond to the means and standard deviations of the posterior pdf for each parameter
takenindividually, i.e. marginalizing over all the other parameters. As such the model derived
from setting each parameter to its mean value does not correspond exactly to the true best fit (at
which the pdf is maximized), though the difference is typically small. Since we are generally
interested in the individual parameter distributions (andthe distance modulus in particular), it is
more useful to present the fit results in this form.

Two objects, SN 2000cx and SN 2002cx, cannot be fit by MLCS2k2.Li et al. (2001, 2003)
discuss the peculiarity of these objects, whose light curves are distinct from the vast majority of SN
Ia. In addition, SN 1998D and SN 1999cw have poor fits, with very broad or multi-peaked pdfs.
Both of these objects have a paucity of data (no more than three photometric points in any filter),
and more importantly, the first observations for each objectoccurred well after maximum light
(+32 and+24 days, respectively; see Table 1). This allows for a wide range of models to fit the
data well, and the uncertain results are not very informative, but we present them for completeness.

Finally, analysis of the distance modulus residuals (see§6.1 and 6.2) leads us to conclude
that theµ0 (andm0

V) uncertainties listed in Table 4 are slightly underestimated. This is likely due
to our less-than-perfect knowledge of the model covariancematrix S . In particular, our analysis
shows that the objects with the smallest distance uncertainties are the ones that show the strongest
evidence for unmodeled variance, suggesting there is a systematic floor to the distance uncertainty
(as opposed to a multiplicative factor to adjust all the uncertainties). We thus recommend that the
µ0 andm0

V uncertainties in Table 4 be increased by addingσadd = 0.08 mag in quadrature to yield
a final estimate ofσ(µ0) andσ(m0

V), and we adopt this augmented uncertainty for all subsequent
results.12

12Note that this number shows only the deficiency of our implementation; in a perfect version of a model like
MLCS2k2, the average distance uncertainties would match the scatter in the residuals without augmentation. This is
because the intrinsic variation of SN Ia around the model is encapsulated into the model covariance matrix, just not
perfectly in our case. Other distance fitters that do not include any model uncertainty often add the standard deviation
of the residuals in quadrature to individual distance errors; this would not be correct for MLCS2k2.
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Fig. 10.— Two-dimensional MLCS2k2 probability densities for the fits to SN 2000fa and SN
1999gh. Each panel shows the four-dimensional probabilitydensity marginalized over the two
remaining parameters. The solid lines and shaded regions indicate 1, 2, and 3-σ confidence regions
(more precisely, 68.3%, 95.4%, and 99.7% enclosed probability regions), while the dotted lines
show 1

2-σ contours.
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Fig. 11.— MLCS2k2 probability densities for the fits to SN 2000fa and SN 1999gh. Each panel
shows the probability distribution for each free parameter, marginalizing over the three remaining
parameters. The empty circles show the grid points at which the fits were calculated. The distribu-
tion mean is denoted by the dashed line, while the dotted lines show one standard deviation about
the mean.
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Table 4. MLCS2k2 Light Curve Fits

SN Ia t0 − 2400000 µ0 + 5 logh65 ∆ A0
V RV m0

V Notes
HJD mag mag mag

1972E 41446.64± 0.96 27.829± 0.110 −0.145± 0.062 0.068± 0.059 3.1 8.324± 0.110
1980N 44585.60± 0.63 31.602± 0.099 +0.032± 0.060 0.282± 0.082 3.1 12.098± 0.099
1981B 44670.95± 0.73 31.104± 0.140 −0.081± 0.060 0.364± 0.121 3.1 11.599± 0.140
1981D 44680.21± 0.53 31.009± 0.228 +0.257± 0.204 0.631± 0.270 3.07± 0.37 11.505± 0.228
1986G 46561.36± 0.24 27.460± 0.203 +1.054± 0.065 2.227± 0.224 2.87± 0.27 7.956± 0.203
1989B 47564.32± 0.59 30.040± 0.144 +0.035± 0.087 1.330± 0.144 2.86± 0.29 10.536± 0.144
1990N 48081.90± 0.17 32.153± 0.090 −0.242± 0.046 0.174± 0.084 3.1 12.648± 0.090
1990O 48076.12± 1.02 35.814± 0.095 −0.150± 0.066 0.071± 0.063 3.1 16.310± 0.095 HF
1990T 48083.06± 1.16 36.555± 0.169 −0.111± 0.095 0.200± 0.120 3.1 17.050± 0.169 HF
1990Y 48115.94± 1.28 36.221± 0.248 +0.036± 0.161 0.497± 0.150 3.03± 0.36 16.717± 0.248 HF
1990af 48195.86± 0.44 36.714± 0.160 +0.519± 0.113 0.144± 0.134 3.1 17.209± 0.160 HF
1991M 48334.98± 1.41 33.516± 0.179 +0.191± 0.112 0.269± 0.174 3.1 14.012± 0.179
1991S 48348.17± 1.18 37.274± 0.131 −0.147± 0.074 0.129± 0.101 3.1 17.770± 0.131 HF
1991T 48374.03± 0.14 30.776± 0.080 −0.220± 0.031 0.340± 0.070 3.1 11.271± 0.080
1991U 48356.18± 1.38 35.612± 0.167 −0.096± 0.086 0.379± 0.187 3.1 16.108± 0.167 HF
1991ag 48414.23± 1.45 34.007± 0.097 −0.134± 0.061 0.060± 0.056 3.1 14.503± 0.097 HF
1991bg 48603.12± 0.31 31.418± 0.101 +1.404± 0.047 0.611± 0.123 3.21± 0.41 11.913± 0.101
1992A 48640.63± 0.19 31.654± 0.067 +0.447± 0.054 0.038± 0.032 3.1 12.150± 0.067
1992G 48669.96± 1.06 32.584± 0.141 −0.198± 0.047 0.499± 0.136 3.07± 0.37 13.079± 0.141
1992J 48671.64± 1.60 36.453± 0.265 +0.445± 0.236 0.259± 0.185 3.1 16.949± 0.265 HF
1992K 48674.37± 1.76 33.207± 0.153 +1.378± 0.116 0.223± 0.144 3.1 13.702± 0.153 HF
1992P 48719.20± 0.86 35.585± 0.124 −0.142± 0.082 0.136± 0.092 3.1 16.081± 0.124 HF
1992ae 48803.18± 1.34 37.731± 0.167 +0.051± 0.102 0.163± 0.141 3.1 18.227± 0.167 HF
1992ag 48806.95± 0.81 35.247± 0.151 +0.027± 0.077 0.424± 0.134 3.1 15.743± 0.151 HF
1992al 48837.86± 0.49 34.125± 0.065 −0.144± 0.035 0.045± 0.038 3.1 14.621± 0.065 HF
1992aq 48833.33± 1.18 38.651± 0.117 +0.193± 0.116 0.065± 0.053 3.1 19.147± 0.117 HF
1992au 48830.62± 1.55 37.379± 0.216 +0.292± 0.196 0.115± 0.097 3.1 17.875± 0.216 HF
1992bc 48912.06± 0.17 34.859± 0.042 −0.236± 0.030 0.017± 0.014 3.1 15.354± 0.042 HF
1992bg 48915.39± 1.23 36.126± 0.130 +0.008± 0.076 0.130± 0.091 3.1 16.622± 0.130 HF
1992bh 48920.43± 0.97 36.899± 0.133 −0.051± 0.085 0.204± 0.114 3.1 17.395± 0.133 HF
1992bk 48938.95± 1.59 37.184± 0.170 +0.414± 0.157 0.097± 0.082 3.1 17.679± 0.170 HF
1992bl 48946.33± 1.14 36.497± 0.123 +0.353± 0.117 0.061± 0.060 3.1 16.993± 0.123 HF
1992bo 48986.26± 0.16 34.742± 0.091 +0.595± 0.072 0.051± 0.049 3.1 15.237± 0.091 HF
1992bp 48980.41± 0.74 37.793± 0.106 +0.095± 0.092 0.060± 0.056 3.1 18.289± 0.106 HF
1992br 48984.63± 1.34 37.977± 0.185 +0.888± 0.173 0.125± 0.115 3.1 18.472± 0.185 HF
1992bs 48985.05± 1.30 37.636± 0.161 −0.031± 0.089 0.172± 0.137 3.1 18.132± 0.161 HF
1993B 49003.99± 1.35 37.779± 0.148 −0.115± 0.076 0.198± 0.119 3.1 18.274± 0.148 HF
1993H 49068.92± 0.46 35.109± 0.095 +0.904± 0.076 0.139± 0.086 3.1 15.605± 0.095 HF
1993L 49095.40± 1.51 31.986± 0.305 +0.041± 0.198 0.722± 0.172 3.04± 0.36 12.482± 0.305
1993O 49134.40± 0.43 37.140± 0.095 +0.025± 0.070 0.077± 0.059 3.1 17.636± 0.095 HF
1993ac 49269.70± 1.19 36.881± 0.189 −0.054± 0.108 0.377± 0.191 3.1 17.377± 0.189 HF
1993ae 49288.58± 1.19 34.468± 0.187 +0.401± 0.157 0.055± 0.055 3.1 14.963± 0.187 HF
1993ag 49316.67± 0.68 37.041± 0.131 +0.119± 0.089 0.166± 0.097 3.1 17.537± 0.131 HF
1993ah 49302.52± 1.33 35.640± 0.200 +0.147± 0.164 0.136± 0.121 3.1 16.135± 0.200 HF
1994D 49432.47± 0.10 31.187± 0.067 +0.142± 0.035 0.109± 0.047 3.1 11.682± 0.067
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Table 4—Continued

SN Ia t0 − 2400000 µ0 + 5 logh65 ∆ A0
V RV m0

V Notes
HJD mag mag mag

1994M 49473.61± 0.90 35.244± 0.121 +0.261± 0.079 0.226± 0.115 3.1 15.739± 0.121 HF
1994Q 49496.72± 1.09 35.759± 0.141 −0.140± 0.075 0.192± 0.121 3.1 16.255± 0.141 HF
1994S 49518.28± 0.50 34.356± 0.077 −0.084± 0.074 0.054± 0.045 3.1 14.852± 0.077 HF
1994T 49514.54± 0.52 36.012± 0.112 +0.731± 0.103 0.093± 0.075 3.1 16.507± 0.112 HF
1994ae 49684.65± 0.15 32.563± 0.065 −0.191± 0.036 0.070± 0.047 3.1 13.058± 0.065
1995D 49768.60± 0.44 32.813± 0.074 −0.186± 0.041 0.081± 0.060 3.1 13.308± 0.074
1995E 49774.67± 0.54 33.198± 0.178 +0.006± 0.057 2.241± 0.176 2.85± 0.28 13.694± 0.178
1995ac 49992.99± 0.40 36.511± 0.108 −0.231± 0.047 0.252± 0.107 3.1 17.007± 0.108 HF
1995ak 50021.16± 0.93 34.741± 0.138 +0.122± 0.065 0.613± 0.131 3.12± 0.39 15.237± 0.138 HF
1995al 50028.96± 0.44 32.714± 0.081 −0.282± 0.035 0.177± 0.065 3.1 13.209± 0.081
1995bd 50086.31± 0.24 34.006± 0.125 −0.239± 0.051 0.523± 0.241 3.01± 0.35 14.502± 0.125 HF
1996C 50128.42± 0.90 35.947± 0.104 −0.104± 0.055 0.136± 0.091 3.1 16.443± 0.104 HF
1996X 50190.85± 0.33 32.432± 0.065 +0.095± 0.048 0.061± 0.044 3.1 12.927± 0.065
1996Z 50215.24± 1.46 32.760± 0.238 +0.112± 0.210 0.609± 0.316 3.05± 0.36 13.256± 0.238 HF
1996ab 50224.69± 1.07 38.934± 0.146 +0.164± 0.127 0.098± 0.091 3.1 19.430± 0.146 HF
1996ai 50255.21± 0.81 31.151± 0.187 −0.098± 0.068 3.662± 0.185 2.09± 0.12 11.647± 0.187
1996bk 50368.46± 1.02 32.195± 0.142 +1.011± 0.124 0.711± 0.184 3.10± 0.38 12.691± 0.142
1996bl 50376.32± 0.58 36.096± 0.113 −0.116± 0.064 0.208± 0.115 3.1 16.592± 0.113 HF
1996bo 50386.93± 0.30 34.043± 0.138 +0.057± 0.070 0.938± 0.138 3.02± 0.35 14.538± 0.138 HF
1996bv 50403.72± 1.27 34.213± 0.157 −0.206± 0.065 0.547± 0.159 3.07± 0.37 14.709± 0.157 HF
1997E 50467.58± 0.41 34.105± 0.091 +0.341± 0.084 0.213± 0.104 3.1 14.600± 0.091 HF
1997Y 50486.88± 1.37 34.563± 0.104 +0.060± 0.078 0.196± 0.087 3.1 15.058± 0.104 HF
1997bp 50548.94± 0.52 32.895± 0.092 −0.180± 0.049 0.537± 0.086 2.88± 0.31 13.391± 0.092 HF
1997bq 50557.99± 0.18 33.458± 0.109 −0.095± 0.063 0.513± 0.095 3.03± 0.35 13.953± 0.109 HF
1997br 50559.26± 0.23 32.248± 0.104 −0.303± 0.031 0.804± 0.112 3.03± 0.35 12.743± 0.104
1997cn 50586.64± 0.77 34.532± 0.070 +1.381± 0.046 0.071± 0.059 3.1 15.027± 0.070 HF
1997cw 50630.75± 0.98 34.075± 0.151 −0.179± 0.064 1.092± 0.145 2.97± 0.33 14.570± 0.151 HF
1997dg 50720.05± 0.84 36.149± 0.114 −0.006± 0.076 0.201± 0.102 3.1 16.645± 0.114 HF
1997do 50766.21± 0.45 33.601± 0.118 −0.146± 0.080 0.312± 0.102 3.1 14.097± 0.118 HF
1997dt 50785.60± 0.31 32.723± 0.191 −0.126± 0.070 1.849± 0.198 3.03± 0.34 13.219± 0.191
1998D 50841.07± 2.02 34.089± 0.627 +0.571± 0.482 0.346± 0.186 3.1 14.585± 0.627 poor fit
1998V 50891.27± 0.84 34.395± 0.102 −0.055± 0.064 0.209± 0.115 3.1 14.891± 0.102 HF
1998ab 50914.43± 0.25 35.213± 0.100 −0.118± 0.051 0.394± 0.082 3.1 15.709± 0.100 HF
1998aq 50930.80± 0.13 31.974± 0.046 −0.063± 0.036 0.024± 0.019 3.1 12.470± 0.046
1998bp 50936.39± 0.33 33.304± 0.075 +1.114± 0.057 0.188± 0.100 3.1 13.800± 0.075 HF
1998bu 50952.40± 0.23 30.283± 0.117 −0.015± 0.038 1.055± 0.114 3.13± 0.36 10.778± 0.117
1998co 50987.76± 1.32 34.431± 0.126 +0.464± 0.196 0.301± 0.183 3.1 14.926± 0.126 HF
1998de 51026.69± 0.17 34.400± 0.082 +1.448± 0.036 0.398± 0.101 3.1 14.896± 0.082 HF
1998dh 51029.83± 0.22 32.846± 0.087 −0.051± 0.042 0.471± 0.061 2.76± 0.27 13.342± 0.087
1998dk 51056.58± 1.48 33.802± 0.219 −0.127± 0.134 0.508± 0.152 3.10± 0.38 14.297± 0.219 HF
1998dm 51062.03± 1.16 33.067± 0.178 −0.192± 0.073 1.045± 0.160 3.08± 0.37 13.563± 0.178
1998dx 51071.32± 0.80 36.917± 0.099 +0.190± 0.099 0.086± 0.065 3.1 17.413± 0.099 HF
1998ec 51088.41± 1.07 35.082± 0.161 −0.169± 0.077 0.569± 0.125 3.01± 0.35 15.578± 0.161 HF
1998ef 51113.99± 0.22 34.142± 0.105 +0.269± 0.083 0.046± 0.044 3.1 14.638± 0.105 HF
1998eg 51110.69± 1.23 35.353± 0.120 +0.014± 0.118 0.224± 0.118 3.1 15.849± 0.120 HF
1998es 51141.89± 0.15 33.263± 0.078 −0.287± 0.030 0.227± 0.073 3.1 13.758± 0.078 HF
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6. Discussion

6.1. Hubble Flow Sample

Constructing a Hubble diagram of nearby SN Ia (Hubble 1929; Kirshner 2004) requires a
Hubble flow sample, for which the measured recession velocities are dominated by the cosmo-
logical redshift (as opposed to peculiar motions). We consider objects withcz ≥ 2500 km s−1 in
the CMB rest-frame to be in the Hubble flow, yielding 101 objects out of our original 133. Addi-
tionally, we require good distances for these SN Ia, eliminating SN 2002cx which could not be fit
by MLCS2k2. Similarly, we further cull the Hubble Flow sample to exclude objects whose first
observation occurs more than 20 days past maximum light (t1 > 20 d; see Table 1), eliminating
two SN Ia (SN 1998D and SN 1999cw). Excessive host-galaxy extinction also leads to uncertain
distances and we exclude objects with meanA0

V > 2.0 mag (another two objects: SN 1995E and SN
1999cl). We explore the consequences of this relatively permissive extinction cut below in§6.4.

We constructed a Hubble diagram of the 96 SN Ia that passed these cuts, and noticed a sig-
nificant outlier: SN 1999ej in NGC 495 (Friedman, King, & Li 1999; czCMB = 3831 km s−1) gave
a residual of∼0.6 mag relative to the tight locus defined by the other objects. Spectroscopy of SN
1999ej showed it to be a normal SN Ia (Jha et al. 1999b) and the photometric data (Jha et al. 2006),
though not plentiful with only 4 fit points each inUBVRI , nonetheless provide a good MLCS2k2
distance with no indication of peculiarity. The solution tothis puzzle is that NGC 495 is in a partic-
ularly dense region of the group/poor cluster Zw 0107+3212 (whose brightest cluster galaxy is the
nearby NGC 507). The cluster has a mean redshiftcz̄CMB ≃ 4690 km s−1 and estimated velocity
dispersionσ ranging from 440–590 km s−1 (Ramella et al. 2002; Miller et al. 2002). Using this
cluster mean redshift instead for SN 1999ej makes it fully consistent with the rest of the sample,
suggesting the observed recession velocity of NGC 495 is strongly affected by its environment, but
we have chosen simply to exclude SN 1999ej from the Hubble flowsample. From a NED search,
we did not find any independent evidence for large peculiar velocities among the other Hubble
flow objects.

Our final Hubble flow sample is the largest compiled to date forSN Ia in the nearby Universe
with homogeneous distances. It consists of 95 SN Ia (denotedHF in Table 4), including 35 out
of 44 of the objects presented by Jha et al. (2006), and more than doubles the MLCS Hubble flow
sample of Jha et al. (1999a).

The Hubble diagram for this sample is shown in Figure 12, where we have fit for only one free
parameter, the intercept.13 This intercept is scale-dependent, but can be expressed several different

13We have adopted anΩM = 0.3, ΩΛ = 0.7 cosmology, which is significant for the more distant objects, and
assumed a peculiar velocity uncertainty of±300 km s−1, important for the nearby objects. Including in quadraturethe
error floor (see§5) of σadd = 0.08 mag yields a reducedχ2 of 1.06 for 94 degrees of freedom. This combination of
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Table 4—Continued

SN Ia t0 − 2400000 µ0 + 5 logh65 ∆ A0
V RV m0

V Notes
HJD mag mag mag

1999X 51203.48± 1.04 35.546± 0.132 −0.181± 0.075 0.139± 0.095 3.1 16.041± 0.132 HF
1999aa 51231.97± 0.15 34.468± 0.042 −0.271± 0.028 0.020± 0.018 3.1 14.963± 0.042 HF
1999ac 51250.60± 0.17 33.334± 0.081 −0.086± 0.039 0.308± 0.072 3.1 13.830± 0.081 HF
1999aw 51253.96± 0.29 36.551± 0.043 −0.369± 0.032 0.019± 0.018 3.1 17.047± 0.043 HF
1999by 51309.50± 0.14 31.158± 0.073 +1.348± 0.030 0.170± 0.083 3.1 11.653± 0.073
1999cc 51315.62± 0.46 35.859± 0.092 +0.337± 0.097 0.148± 0.088 3.1 16.355± 0.092 HF
1999cl 51342.28± 0.26 30.604± 0.163 +0.031± 0.087 2.666± 0.160 2.22± 0.15 11.099± 0.163
1999cp 51363.22± 0.26 33.520± 0.098 −0.103± 0.102 0.072± 0.062 3.1 14.015± 0.098 HF
1999cw 51352.49± 1.47 33.363± 0.141 −0.306± 0.067 0.161± 0.073 3.1 13.859± 0.141 poor fit
1999da 51370.57± 0.17 33.905± 0.101 +1.451± 0.038 0.233± 0.115 3.1 14.400± 0.101 HF
1999dk 51413.92± 0.78 34.273± 0.098 −0.233± 0.047 0.201± 0.094 3.1 14.769± 0.098 HF
1999dq 51435.70± 0.15 33.668± 0.067 −0.338± 0.024 0.369± 0.077 3.1 14.163± 0.067 HF
1999ee 51469.29± 0.14 33.472± 0.088 −0.208± 0.030 0.797± 0.085 2.76± 0.27 13.968± 0.088 HF
1999ef 51457.78± 1.27 36.657± 0.111 −0.057± 0.077 0.051± 0.044 3.1 17.153± 0.111 HF
1999ej 51482.37± 0.85 34.459± 0.123 +0.302± 0.088 0.166± 0.099 3.1 14.954± 0.123
1999ek 51481.65± 0.50 34.360± 0.111 +0.050± 0.067 0.475± 0.251 3.1 14.856± 0.111 HF
1999gd 51518.40± 1.14 34.606± 0.167 +0.024± 0.073 1.381± 0.156 2.99± 0.33 15.101± 0.167 HF
1999gh 51513.53± 0.91 32.761± 0.078 +0.902± 0.081 0.084± 0.074 3.1 13.257± 0.078 HF
1999gp 51550.30± 0.17 35.622± 0.061 −0.323± 0.030 0.076± 0.051 3.1 16.118± 0.061 HF
2000B 51562.85± 1.30 34.628± 0.216 +0.253± 0.190 0.286± 0.136 3.1 15.123± 0.216 HF
2000E 51576.80± 0.35 31.721± 0.107 −0.277± 0.039 0.609± 0.189 3.01± 0.35 12.216± 0.107
2000bh 51636.31± 1.47 35.309± 0.131 −0.026± 0.067 0.138± 0.093 3.1 15.805± 0.131 HF
2000bk 51646.02± 1.08 35.390± 0.156 +0.613± 0.129 0.290± 0.148 3.1 15.885± 0.156 HF
2000ca 51666.12± 0.46 35.250± 0.060 −0.125± 0.048 0.030± 0.024 3.1 15.746± 0.060 HF
2000ce 51667.45± 1.01 34.376± 0.179 −0.149± 0.060 1.761± 0.179 2.91± 0.30 14.872± 0.179 HF
2000cf 51672.33± 0.83 36.382± 0.104 −0.006± 0.065 0.194± 0.097 3.1 16.878± 0.104 HF
2000cn 51707.83± 0.16 35.153± 0.086 +0.716± 0.076 0.171± 0.109 3.1 15.648± 0.086 HF
2000cx · · · · · · · · · · · · · · · · · · bad fit
2000dk 51812.47± 0.28 34.408± 0.077 +0.578± 0.067 0.033± 0.032 3.1 14.904± 0.077 HF
2000fa 51892.25± 0.57 35.121± 0.128 −0.126± 0.061 0.283± 0.105 3.1 15.616± 0.128 HF
2001V 51973.28± 0.16 34.187± 0.065 −0.280± 0.032 0.092± 0.052 3.1 14.683± 0.065 HF
2001ay 52023.96± 0.78 35.926± 0.102 −0.405± 0.045 0.374± 0.098 3.1 16.422± 0.102 HF
2001ba 52034.18± 0.54 35.889± 0.075 −0.093± 0.056 0.041± 0.037 3.1 16.385± 0.075 HF
2001bt 52063.91± 0.21 33.952± 0.114 +0.071± 0.052 0.616± 0.111 3.00± 0.35 14.447± 0.114 HF
2001cn 52071.10± 0.74 34.130± 0.106 +0.007± 0.052 0.447± 0.100 3.1 14.625± 0.106 HF
2001cz 52103.89± 0.31 34.294± 0.111 −0.078± 0.054 0.254± 0.116 3.1 14.790± 0.111 HF
2001el 52182.55± 0.20 31.544± 0.077 −0.193± 0.032 0.696± 0.059 2.40± 0.19 12.040± 0.077
2002bf 52337.87± 0.50 35.480± 0.134 −0.111± 0.065 0.254± 0.131 3.1 15.975± 0.134 HF
2002bo 52356.89± 0.14 31.945± 0.105 −0.048± 0.041 1.212± 0.099 2.57± 0.22 12.441± 0.105
2002cx · · · · · · · · · · · · · · · · · · bad fit
2002er 52524.84± 0.15 33.034± 0.085 +0.170± 0.057 0.470± 0.112 3.1 13.530± 0.085 HF
2003du 52765.62± 0.50 33.189± 0.049 −0.247± 0.028 0.037± 0.026 3.1 13.685± 0.049

Note. — Values listed are means and standard deviations for each of the parameters, as determined from their one-dimensional
probability distributions marginalized over the other parameters. We use the standard notationh65 ≡ H0/(65 km s−1 Mpc−1). The
extinction parametersA0

V andRV correspond to host-galaxy extinction only; Galactic reddening is listed in Table 1. The corrected
apparent peak magnitudem0

V differs from the distance modulusµ0 by an additive constant,m0
V ≡ µ0 + M0

V .
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Fig. 12.— Apparent magnitude-redshift relation for our Hubble flow sample of 95 SN Ia, using
MLCS2k2 to correct for host-galaxy extinction and intrinsic luminosity differences, and redshifts
in the CMB frame. The shape of the solid-line is fixed by the inverse-square law and (for high
cz) the adoptedΩM = 0.3,ΩΛ = 0.7 cosmology; the intercept is the only free parameter and it is
determined to±0.018 mag.
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Fig. 13.— Magnitude residuals of the Hubble flow sample afterMLCS2k2 correction, relative to
the best-fit Hubble line shown in Figure 12.
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ways. One relates it to the absolute magnitude of the fiducialSN Ia, and provides the derivation
for the zeropoint in equation 7 (which in turn defines the relation betweenµ0 andm0

V):

M0
V − 5 logH0 = m0

V − 25− 5 log

(

c (1+ z)
∫ z

0

[

ΩM
(

1+ z′
)3
+ ΩΛ

]−1/2
dz′

)

, (8)

valid for a flat,ΩM + ΩΛ = 1 Universe. The weighted fit to the full Hubble flow sample gives
M0

V − 5 logh65 = −19.504 ± 0.018 mag (statistical uncertainty only). Alternately we canfollow
the notation of Jha et al. (1999a) and calculate the “intercept of the ridge line,”aV , defined as14

aV = log

(

c (1+ z)
∫ z

0

[

ΩM
(

1+ z′
)3
+ ΩΛ

]−1/2
dz′

)

− 0.2m0
V , (9)

again assuming anΩM + ΩΛ = 1 Universe. The full Hubble flow sample gives a best-fit value
and formal uncertainty ofaV = 0.7139 ± 0.0037. Unfortunately we cannot directly compare
these intermediate results with the values given by Jha et al. (1999a), because MLCS2k2 uses new
template vectors with new magnitude and∆ zeropoints, which uniformly shifts all distances,aV ,
andM0

V .

The scatter about the Hubble line in Figures 12 and 13 isσ = 0.18 mag (∼8% in distance).
Part of the scatter in the Hubble diagram comes from our inexact knowledge of cosmological
redshifts because of galactic peculiar velocities. Our estimate of the peculiar velocity uncertainty
of ± 300 km s−1 corresponds to an uncertainty of 0.26 mag for the nearest objects in the Hubble
flow sample (cz ≃ 2500 km s−1), which drops to under 0.02 mag for the most distant object
(cz = 37239 km s−1). The mean peculiar velocity uncertainty for the full sample is 0.11 mag15,
and subtracting this in quadrature from the overall dispersion implies that theintrinsic dispersion
in SN Ia distances is at most 0.14 mag (. 7% in distance) for samples similar to the one presented
here.

Our Hubble flow sample is the largest ever fit self-consistently with one technique, and com-
prises data from diverse sources. In addition, we have attempted to limit the number of objects
rejected from the sample. We believe the measured dispersion is more reflective of the true dis-
persion among SN Ia as they are currently being observed. Further restricting samples to the best
objects (e.g., those with low reddening or close to fiducial luminosity/light-curve shape) clearly

the peculiar velocity uncertainty andσadd results in a good fit across the whole Hubble flow sample as wellas selected
subsamples.

14In Jha et al. (1999a) the intercept of the ridge line was givenasaV = logcz − 0.2m0
V. Here we explicitly show the

dependence on cosmological parameters.

15Because of the inverse dependence on the redshift, this is not the same as the peculiar velocity uncertainty at the
mean redshift,cz̄CMB = 8796 km s−1, where±300 km s−1 corresponds to±0.07 mag.
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provides an avenue to reducing the dispersion, but it is important that these restrictions be care-
fully defined to avoid biasing applications of these samplesto measuring cosmological parameters
such asH0, ΩΛ, or w. For example, Guy et al. (2005) show that the quoted dispersion of 0.08
mag and 0.07 mag for the color-selected samples presented byWang et al. (2003) and Wang et
al. (2005), respectively, increase to 0.15 mag and 0.18 mag,when less stringent color cuts are ap-
plied. Comparison of MLCS2k2 to other SN Ia distance-fittingtechniques based on the scatter in
respective Hubble diagrams requires supernova samples that are comparable (and ideally identical)
in size and scope.

We display the distribution of the Hubble flow residuals versus the measured∆ and A0
V in

Figure 14. No obvious trends are present, though the scatterof the points decreases with increasing
∆, meaning the lower luminosity SN Ia have a tighter correlation around the luminosity/light-
curve shape relationship. If we arbitrarily divide the sample into three bins, with slow decliners
(∆ < −0.15), normal SN Ia (−0.15≤ ∆ ≤ 0.3), and fast decliners (∆ > 0.3), the residual dispersions
areσ = 0.21 mag (N = 17 objects), 0.18 mag (N = 57), and 0.14 mag (N = 21), respectively.

In Figure 15 we show correlations in the MLCS2k2 fit parameters (∆ andA0
V), as well as the

residuals in the Hubble flow sample, with host-galaxy morphological type and projected separation.
These confirm well-known trends for SN Ia (e.g., Hamuy et al. 2000, and references therein): slow-
declining (low∆, high luminosity) SN Ia and heavily extinguished SN Ia are not generally found
in early-type galaxies or in the outskirts of their hosts. Note there are some exceptions, such as
SN 1990Y, 1991bg, and 1993ac, all fit with meanA0

V ≥ 0.3 mag in elliptical hosts (though in
the case of the very subluminous SN 1991bg, there is a significant correlation between∆ and
A0

V). The lower panels of Figure 15 show the residuals after MLCS2k2 calibration of the Hubble
flow sample; note the large reduction in the vertical scale, showing the efficacy of corrections for
intrinsic luminosity differences and extinction. The Hubble flow SN Ia do not show any trend
in their residuals with respect to host galaxy morphology orprojected galactocentric distance,
though perhaps the residual scatter is decreased at large separations. There is also a hint that SN
Ia in elliptical hosts have slightly negative residuals after MLCS2k2 correction (meaning they are
corrected to be too bright/too nearby); however the weighted average residual is only−0.06± 0.06
mag, consistent with zero. Grouping together E and E/S0 hosts (which show a similar paucity of
slowly-declining SN Ia in the upper left panel) yields a weighted mean residual of−0.02± 0.04
mag. The observed scatter in the residuals of the early-typehosts is less than the overall sample,
with σ = 0.11 mag for elliptical hosts only, andσ = 0.13 mag for E, E/S0, and S0 hosts; a large
fraction of this scatter may be from peculiar velocities, which should contribute∼0.09 mag to the
dispersion for these galaxies.

Gallagher et al. (2005) have approached these issues in moredetail, with integrated spectra
of the host galaxies of many of these SN Ia, allowing them to correlate SN properties (before and
after MLCS2k2 correction) with additional parameters suchas host metallicity, star formation rate,
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Fig. 14.— MLCS2k2 Hubble flow sample residuals versus mean values of the light-curve shape
parameter∆ and host-galaxy extinctionA0

V . The conversion from∆ to the peakV absolute magni-
tude, given on the top axis of the left panel, is based on equation 7.
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Fig. 15.— Correlations with host-galaxy morphology and projected galactocentric distance
(GCD). The top panels show mean values of the light-curve shape parameter∆ for the full sample,
and the middle panels show the distribution of host-galaxy extinctionA0

V . The bottom panels show
the residuals relative to the best fit Hubble line for the Hubble flow sample only (after MLCS2k2
correction for luminosity differences and extinction). Projected GCDs are calculated using the
angular offsets presented in Table 1, with angular diameter distances (ΩM = 0.3,ΩΛ = 0.7) calcu-
lated from the redshift for objects withczCMB ≥ 2500 km s−1 and from the MLCS2k2 supernova
distances for objects with lower recession velocities.
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and star formation history. Their results suggest no clear correlations with the MLCS2k2 Hubble
flow residuals, though there is marginal evidence for a relation between the residuals and host
metallicity.

6.2. A Hubble Bubble?

Zehavi et al. (1998) presented evidence for a large local void based on SN Ia distances which
suggested a monopole in the peculiar velocity field. They found that the Hubble constant estimated
from SN Ia within 70h−1 Mpc was 6.5%± 2.2% higher thanH0 measured from SN Ia outside this
region, assuming a flatΩM = 1 Universe. The significance of this void decreases in the current
concordance cosmology (ΩM = 0.3, ΩΛ = 0.7) to 4.5%± 2.1%, but it is still worthwhile to test
whether the larger SN Ia sample and updated distances presented here provide evidence for or
against a void.

Following Zehavi et al. (1998), it is convenient to work withthe supernova distances in units
of km s−1, making them independent of the distance scale. The ambiguity in the zeropoint of the
Hubble diagram disappears if we use the quantityH0dSN, which can be calculated

H0dSN = 65
[

100.2(µ65−25)
]

km s−1, (10)

where we defineµ65 ≡ µ0 + 5 logh65, tabulated in the third column of Table 4. These can be
compared to scale-independent luminosity distances: for an object at a cosmological redshiftz in
a flat Universe,

H0dL(z) = c (1+ z)
∫ z

0

[

ΩM
(

1+ z′
)3
+ ΩΛ

]−1/2
dz′, (11)

and the differenceu = H0dL(z) − H0dSN is the host galaxy peculiar velocity. The deviation from
the Hubble law is given byδH/H = u/H0dSN.

The top panel of Figure 16 showsδH/H for the 95 SN Ia in the full Hubble flow sample,
where we have used our standard assumptions: a peculiar velocity uncertainty of±300 km s−1,
σadd = 0.08 mag, and aΩM = 0.3, ΩΛ = 0.7 cosmology. We then partition the full sample into
two parts at each value ofH0dSN (such that there are at least six objects in the smaller subset) and
calculate the best-fit Hubble constantsHinner andHouter, and their corresponding uncertainties (see
equations 2 and 3 of Zehavi et al. 1998). We define the void amplitude,δH ≡ (Hinner−Houter)/Houter,
and display this quantity, with its uncertainty, as a function of the partition radius in the middle
panel of Figure 16. We normalizeδH by its uncertainty in the lower panel to illustrate the void
significance.

The full Hubble flow sample clearly shows a void signature; the most significant void is
derived when the sample is partitioned atH0dSN ≃ 7400 km s−1 (between SN 2000ca and SN
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Fig. 16.— Indications of a local void. The top panel shows thedeviation from the Hubble law
for each object in the full Hubble flow sample. The radius of each circle is inversely proportional
to the uncertainty, with several representative points showing the error bars explicitly to calibrate
the symbol size. The solid line shows the best-fit Hubble constants in the two-zone model with
the most significant void; the shaded regions give the 1-σ uncertainty on each of these values.
The middle panel shows the void amplitude,δH ≡ Hinner/Houter − 1, as a function of the radius
at which the sample is partitioned, with the shaded region illustrating the 1-σ uncertainty. The
lower panel shows the significance of the void, i.e. the void amplitude divided by its uncertainty.
The most significant void occurs when the sample is partitioned atH0dSN ≃ 7400 km s−1, with
δH = 6.5± 1.8%.
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2000bh atH0dSN = 7293 and 7494 km s−1, respectively), withδH = 6.5 ± 1.8%, similar in both
location and amplitude to the Zehavi et al. (1998) result. Wehave performed a number of statistical
tests to assess the significance of the result. We created 3× 105 Monte Carlo realizations of the
data set with Hubble law deviations drawn from a Gaussian distribution with a standard deviation
equal to the uncertainty in each data point, and fit for the most significant void or overdensity at
each partition radius. Only 0.2% of the time was there a void as significant as the one seen in
the actual data (at any location). Because this result depends upon our assumed error distribution,
we also created synthetic data sets with the Hubble law deviations randomly resampled from the
deviations in the full data set (both with and without resampling of their errors). We have also
performed a full bootstrap resampling analysis to determine the distribution of the void amplitude
and significance around their best fit values. In all of these tests a void with the significance as in
the actual data was seen at most 1.2% of the time, and typically much less often, depending on the
details of the synthetic sample, suggesting the result is valid at the 2.5 to 3.5-σ level of confidence.

The result also seems robust to jackknife tests; eliminating any one, two, or even three points
from the sample does not result in a very large change in the void characteristics. With the three
largest outliers removed (without justification; these objects which are not peculiar in any way),
the void amplitude only decreases to 5.2 ± 1.8%. We have also confirmed that the result persists
using the 51 SN Ia from 1997 onwards only, an independent sample from Zehavi et al. (1998). The
newer data show an even stronger result,δH = 9.1±2.6% (at the same location), but there are only a
handful of recent SN Ia more distant than 10,000 km s−1 and the most robust results come from the
full sample. Indications of this void can also be seen in other distance estimates to SN Ia (though
with largely overlapping samples), including the “gold” sample of Riess et al. (2004), which used
a slightly earlier implementation of MLCS2k2 (Jha 2002), and∆m15 distances presented by Prieto,
Rest, & Suntzeff (2006), suggesting it is not an artifact limited to our particular analysis.

The significance of the void at 7400 km s−1 is high partly because it is near the middle of the
sample, such thatHinner andHouter (and thus, their ratio) are most precisely measured. The data
suggest that void of similar amplitude may be present if the sample is partitioned nearH0dSN ≃

4800 km s−1. Indeed, if we attempt to fit a three-zone model, the data support a model with
δH ≃ 8% closer than 4600 km s−1, andδH ≃ 5% for 4600 km s−1

. H0dSN . 7400 km s−1, both
relative to the outer region beyond 7400 km s−1. However, another three-zone scenario with nearly
the same likelihood hasδH ≃ 5% nearer than 7400 km s−1, and anoverdense region withδH ≃ −2%
at 7400 km s−1

. H0dSN . 14000 km s−1 relative to the more distant Hubble flow, which is similar
to the three-zone infall region model seen by Zehavi et al. (1998). Because there are fewer points
in each region, the uncertainties in these numbers are increased to∼2.5%. Moreover, the data do
not favor a three zone model over a two zone model (aχ2 decrease of less than 1 per new model
parameter), unlike the situation for a two zone model over a one zone model (aχ2 decrease of more
than 7 per new parameter).
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While it seems likely this void signature is present in the SNdata, is it really present in the
Universe? The void boundary does occur at a distance comparable to large mass concentrations
in the local Universe, including the Great Wall and the Southern Wall (Geller 1997 and references
therein). A void withδH = 6.5% on this scale would imply an underdensityδρ/ρ ≃ 20 to 40%
for ΩM = 0.3, depending on our location within the void (Lahav et al. 1991; Turner, Cen, &
Ostriker 1992). Such a large-scale density contrast, whilenot ruled out, is relatively unlikely in
currentΛCDM models; the fraction of mass residing in such a void ranges from 10−4 to a few
percent, depending on the exact size and underdensity (Furlanetto & Piran 2006). Furthermore,
tests of the Hubble bubble using other distance measures have not corroborated the SN Ia result.
Using Tully-Fisher distances to galaxy clusters, Giovanelli et al. (1999) findδH = 1.0 ± 2.2% at
7000 km s−1, while Hudson et al. (2004) deriveδH = 2.3 ± 1.9% via Fundamental Plane cluster
distances, both consistent with no void. Each method is subject to various systematic effects that
could lead to spurious results. For the SN, these include K-corrections (but which are unlikely to
cause a∼0.1 mag error atz ≃ 0.03), the effect of higher-order multipoles on the monopole signature
(but the sky distribution of the Hubble flow objects generally shows the void in all directions), or
a possible photometric offset between the Calán/Tololo sample (accounting for most of the more
distant objects) and more recent samples such as CfA I and II (making up most of the more nearby
objects; Prieto, Rest, & Suntzeff 2006). More data (throughout the nearby redshift range,z . 0.15)
and a more thorough analysis are needed to definitively resolve this open issue.

Regardless of whether the Hubble bubble is due to a real localvoid in the Universe or an
artifact of SN Ia distances, the feature is present in the Hubble flow SN sample, and this has
important implications for using SN Ia as tools for precision cosmology.16 The Hubble flow sample
is critical to both measurements ofH0 (a differential measurement between the Hubble flow objects
and nearby Cepheid-calibrated SN Ia) andΩΛ or w (a differential measurement between the Hubble
flow objects and high-redshift SN Ia), and both applicationsare affected by this result. The effect
on H0 is readily apparent; our derivedH0 will be 6.5% higher using a Hubble flow sample with
H0dSN . 7400 km s−1 compared to a Hubble flow sample withH0dSN & 7400 km s−1. This is
mitigated if we use the full Hubble flow sample, but that stillyields a small but not insignificant
effect: the full sampleH0 is larger by 3% compared to just the subsample beyond 7400 km s−1

(which gives an intercept of the ridge line,aV = 0.7015± 0.0049).

For high-redshift applications, the void signature can be much more important. Whereas the
choice of using the full Hubble flow sample or one just with objects beyond the void region (with
z & 0.025) does not significantly affect the conclusion from SN Ia that we live in an accelerating

16This is not to say the reason for the discrepancy is not important. If the SN Ia are revealing a true void, one would
presumably proceed to measure the global Hubble constant and other cosmological parameters simply using a Hubble
flow sample beyond the void region (withz & 0.025; Riess et al. 2004). However, if the indications for a void are due
to an unknown systematic error, the effects on the cosmological utility of SN Ia could be much more severe.
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Universe (Riess et al. 2004), such a choice has a large effect in current efforts to measure the equa-
tion of state of the dark energy. In Figure 17 we show constraints onw from a simulation in which
the current Hubble flow sample is used in conjunction with an artificial data set of 200 SN Ia with
0.3 ≤ z ≤ 0.8, as expected from the ongoing ESSENCE survey (Miknaitis etal. 2007). The results
show a∼20% difference in the derived value ofw using the full Hubble flow sample compared to
one only including objects withH0dSN ≥ 8000 km s−1 — twice the target statistical uncertainty
of the survey. For future surveys with thousands of high redshift SN Ia, this single systematic un-
certainty in the Hubble flow sample could easily dwarf all other sources of uncertainty combined.
Clearly, then, precision cosmology with SN Ia will require an investment innearby SN Ia (both in
data and analysis) comparable to the immense efforts ongoing and envisioned at high redshift.

6.3. The Local Group Motion

The precision of SN Ia distances makes them well suited to measure peculiar velocities of
nearby galaxies (e.g., Riess, Press, & Kirshner 1995b). Many new SN Ia are being discovered
at redshifts conducive to studying the local flow field (z . 0.03). In Figure 18, we show a clear
detection of the motion of the Local Group relative to the frame defined by nearby SN Ia. We plot
the host galaxy peculiar velocities (in the Local Group frame,uLG = H0dL(zLG)−H0dSN) of 69 SN Ia
with 1500 km s−1 ≤ H0dSN ≤ 7500 km s−1 in Galactic coordinates (excluding the cluster member
SN 1999ej and SN 2000cx which could not be fit by MLCS2k2). The distance range was chosen to
exclude Virgo cluster galaxies at the lower end, and be within the void signature discussed above
at the upper end (so that monopole deviations are minimized,in addition to excluding objects with
increasingly uncertain absolute peculiar velocities).

A dipole signature is clearly present in the data; a simple (naive) dipole fit to these SN data
indicates the Local Group is moving at 541± 75 km s−1 towards (l, b) = (258◦ ± 18◦, +51◦ ± 12◦).
This is consistent with the position and amplitude of the CMBdipole, 635 km s−1 towards (269◦,
+28◦), at approximately the 2-σ confidence level. In addition, the paucity of SN Ia discovered at
low Galactic latitude skews the best fit dipole away from the Galactic plane, suggesting that the
SN Ia peculiar velocities are providing evidence for convergence of the local flow field to the CMB
dipole at roughly the depths probed by these objects.

The full MLCS2k2 sample is quite amenable to more sophisticated analysis of the flow field
(Riess et al. 1997b), such as recently performed by Radburn-Smith, Lucey, & Hudson (2004), who
constrainedβ ≡ Ω0.6

M /b = 0.55± 0.06 comparing the nearby SN sample of Tonry et al. (2003)
with the IRAS PSCz galaxy survey (Saunders et al. 2000). The ever-increasing nearby SN sample
should also allow for merging and extension of elaborate local flow models, for example, such as
provided by surface-brightness fluctuation distances (Tonry et al. 2000). For maximum utility, we
strongly encourage nearby SN discovery efforts in the southern hemisphere (which would help fill
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Fig. 17.— Effect of a local void on constraints of the dark energy equationof state, using a simu-
lated sample of 200 SN Ia with 0.3≤ z ≤ 0.8 as expected from the ESSENCE survey (Miknaitis et
al. 2007). We perform a cosmological fit using the same simulated high-redshift sample plus three
nearby samples: (1) the full MLCS2k2 Hubble flow sample with 95 SN Ia, (2) the nearby Hubble
flow objects withH0dSN < 7000 km s−1 (48 SN Ia) and (3) the distant Hubble flow objects with
H0dSN > 8000 km s−1 (40 SN Ia). The figure shows 68.3% (1-σ) confidence regions (shaded),
and the mean values ofΩM andw (crosses). The input cosmology for the simulated objects is
ΩM = 0.3, ΩΛ = 0.7 (w = −1), with the distance scale set by the full Hubble flow sample.In
the cosmological fit, we assume a flat Universe and a prior onΩM = 0.30± 0.04. The different
low-redshift samples have a strong effect on the estimation ofw, with w = −0.99±0.12 for the full
Hubble flow sample,w = −1.19± 0.17 for the nearby Hubble flow sample andw = −0.80± 0.11
for the distant Hubble flow sample.
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Fig. 18.— Peculiar velocities of 69 SN Ia with 1500 km s−1 ≤ H0dSN ≤ 7500 km s−1 in the
rest-frame of the Local Group, plotted in Galactic coordinates (with central meridianℓ = 180◦).
The blue circles indicate SN Ia in galaxies with negative peculiar velocities (i.e., approaching us
relative to the cosmic expansion). The red circles indicatepositive peculiar velocities, objects from
which we are moving away. The area of the symbols is proportional to the amplitude of the peculiar
velocity. The squares mark the location of the CMB dipole (Fixsen et al. 1996) and are drawn to
scale relative to the circles, with the Local Group moving towards (269◦, +28◦) at 635 km s−1. The
stars show the position and amplitude of the best-fit simple dipole model to the SN data, with the
shaded area indicating locations within the formal 2-σ confidence region.
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the empty region in the lower right quadrant of Figure 18).

6.4. Extragalactic Extinction Laws

Extinguished SN Ia, though less than ideal distance indicators, nevertheless provide one of the
few ways to constrain the extinction law along individual lines of sight through distant galaxies (see
also e.g., Muñoz et al. 2004, but note McGough et al. 2005). The traditional method of using SN Ia
to determine the extinction and reddening properties of extragalactic dust (typically parameterized
by RV) has been to plot the magnitude residuals (assuming a relative distance, such as from the
Hubble law) in a given passband and epoch (for example, inB or V at maximum light) versus the
SN color at some epoch (for instance,B−V also at maximum light). Because SN Ia are not perfect
standard candles, this simple method fails: the magnitude residuals and the intrinsic colors are
both functions of intrinsic luminosity. In the calibrated candle framework, the light-curve shape
provides the intrinsic luminosity (through a parameterization such as∆m15). However, SN Ia with
different light curve shapes have varying luminositiesand colors, so determination ofRV depends
critically on disentangling the intrinsic variation from the contributions of dust.17

By choosing objects in early-type host galaxies, or those that are not located in spiral arms,
and using the observations at times when the intrinsic colors are nearly independent of luminosity
(e.g., the Lira law for the late-time evolution ofB−V; §2.3), it is possible to derive and correct for
the relation between intrinsic luminosity and color and construct a sample of magnitude residuals
and color excesses which are dominated by the effect of host-galaxy dust. From this procedure
Phillips et al. (1999) foundRV = 2.6 ± 0.4, lower than but roughly consistent with the canonical
RV = 3.1 for Galactic dust. Similarly, Altavilla et al. (2004) findRV = 2.5 and Reindl et al. (2005)
giveRV = 2.65±0.15, using generally similar (though different in detail) methods of separating the
intrinsic and dust effects on luminosity and color. Using a previous incarnation of MLCS (albeit
one with too strong a dependence of intrinsic color on light curve shape) Riess et al. (1996b) found
RV = 2.55± 0.30.

Here we present a different method of determiningRV , individually for each SN Ia, using
MLCS2k2. This alternative is discussed by Riess et al. (1996b), and does not require an indepen-
dent estimate of the SN Ia distance. Rather, we includeRV directly as an MLCS2k2 fit parameter,
and make use of the relations between the extinction in different passbands (see Figure 5 and Table
2). With only two observed passbands, such asB andV (and thus, only one observed color), the

17Tripp & Branch (1999) constructed a two parameter model for SN Ia distances based on fitting SN Ia peak
magnitudes as a linear function of∆m15 and peakB−V that explicitly forgoes any attempt at the difficult problem of
separating these two causes for faint, red SN Ia. This model is particularly sensitive to the makeup of the sample, and
requires care in its application. The same applies to the model of Parodi et al. (2000).
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three parametersµ0, A0
V , andRV are degenerate, so we require observations in at least threepass-

bands to constrainRV directly.18 Because the distance modulus shifts magnitudes in all passbands
uniformly, this approach is effectively the same as constrainingRV from multiple color excesses
(e.g.,E(V−I)/E(B−V); Riess et al. 1996b).

An advantage of this method is that we do not require independent distances; therefore, ex-
tinguished SN Ia with recession velocities too small to givereliable Hubble flow distances can
still be used to constrainRV . In addition, because MLCS2k2 explicitly utilizes a model covari-
ance matrix, the constraints onRV properly account for correlated uncertainties in the data and the
model, as well as the effect of the intrinsic dispersion in the luminosities and colors. Furthermore,
MLCS2k2 requires the data in all passbands (for one SN) be fit by a consistentRV , and required
constraints such asRB = RV +1 are automatically enforced (not necessarily the case in the alternate
method where residuals inB andV are independently regressed against the color excess; Phillips
et al. 1999; Reindl et al. 2005).

The main disadvantage to this approach is a lack of sensitivity. The intrinsic variation in
SN Ia colors, observational uncertainties, and the subtle relative color differences (in the optical
bands) with changes in the extinction law combine to make theconstraints onRV relatively weak
for individual SN Ia. Unfortunately, theU band, which has the most sensitivity to varyingRV , also
has the most intrinsic dispersion (and this is clearly not related toRV ; Jha et al. 2006). In the upper
panel of Figure 19, we plot a histogram of the mean values ofRV for the sufficiently extinguished
SN Ia tabulated in Table 4, and show the relation betweenRV andA0

V for these objects in the lower
panel.

On first inspection, the data show a clustering nearRV ≃ 3.1, with a handful of objects with
smaller values and hardly any with significantly larger values. However, because of the lack of
sensitivity toRV even for these moderately extinguished objects, the results turn out to be quite
dependent on the choice of prior, ˆp(RV). As described in§5, we have used a prior onRV based
on its distribution along Galactic lines of sight from CCM89which is a Gaussian inR−1

V and is
shown as the solid curve in the upper panel of Figure 19. When data are increasingly informa-
tive, the posterior pdf is decreasingly sensitive to the choice of prior, but in this case the data only
weakly constrainRV and the prior matters. Using the extreme case of a uniform prior for RV ≥ 1.6
(implying we are completely ignorant of the relative likelihood of these different kinds of dust
distributions) yields the dotted blue histogram and pointsin Figure 19. Even this is not completely
satisfactory, because three objects favorRV at the (arbitrary) lower limit of the prior, which be-

18Another approach that would work for Hubble flow SN Ia with only two observed passbands in the MLCS2k2
framework would be to use the Hubble law to put a prior onµ0, and then fit forA0

V andRV . This would essentially be
the same as using magnitude residuals with respect to the Hubble line as discussed above. However, almost all of the
nearby SN Ia presented here have observations in three or more filters, and so we can use the direct method.
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Fig. 19.— Distribution of the host galaxy extinction law parameter,RV , and its correlation with
the host galaxy extinctionA0

V . The solid curve in the upper panel shows the adopted MLCS2k2
prior, p̂(RV), which is a Gaussian inR−1

V , and has a meanRV = 3.1 with a standard deviation of
0.4. The solid histogram shows the distribution of the meanRV for 33 extinguished SN Ia, using
MLCS2k2 and ˆp(RV), listed in Table 4. The dotted histogram (blue in the electronic edition) shows
the distribution if a uniform prior forRV ≥ 1.6 is adopted instead. The filled circles in lower panel
show the meanRV andA0

V using the MLCS2k2 prior for these 33 objects, while the emptysquares
with dotted error bars (blue in the electronic version) correspond to results based on the uniform
prior.
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comes increasingly unlikely (and perhaps unphysical; Draine 2003 and references therein): lower
RV corresponds to dust that reddens more and more for a given attenuation, favoring smaller and
smaller grains.

Nevertheless, even with this significant dependence on the prior, some results regardingRV are
robust. The effect of the prior is less important for objects which have veryhigh extinction (A0

V & 2
mag). In particular, the two most heavily extinguished objects in the sample, SN 1996ai and SN
1999cl, both firmly requireRV < 3.1. In addition, the posterior pdf has important differences from
the prior pdf (which is displayed normalized to the same total area). There is a distinct deficit
of SN Ia which yieldRV significantly greater than 3.1, whereas many such sight lines exist in
the Milky Way (particularly in dense clouds, withRV ≃ 4 to 5). The SN IaRV distribution may be
more similar to lines of sight in the Magellanic Clouds (Gordon & Clayton 1998; Misselt, Clayton,
& Gordon 1999) which typically have lowerRV , and it might be worthwhile to investigate priors
on RV derived from more sophisticated models and larger samples of stars, including LMC and
SMC lines of sight (Reichart 2001). An important possibility to consider is that the dust around
heavily extinguished SN Ia may be local to the SN environment; SN 1995E, for example, with
A0

V = 2.24± 0.18 mag, occurred in a relatively face-on host galaxy, suggesting our line of sight to
the SN does not have a large path length in the galaxy disk. If “local” dust plays a significant role,
the RV distribution could be quite different for moderately and heavily extinguished SN Ia, and
such an effect may be difficult to discern using the method which correlates residualswith color
because the most reddened objects have the largest lever arm.

Constraints onRV could also be strengthened if we included photometry in other passbands.
Observations further in the UV would be increasingly sensitive to variations inRV , but they are
difficult to obtain (requiring space-based data for nearby extinguished SN Ia or very deep ground-
based data for distant extinguished SN Ia for which the desired wavelengths redshift past the at-
mospheric cutoff), and the intrinsic SN Ia magnitudes and dispersions are unexplored at these
wavelengths. On the other hand, near-infrared data will be extremely valuable in providing a long
wavelength baseline to constrain both the extinction and the extinction law (e.g., Krisciunas et
al. 2006 and references therein). We are currently developing a method to incorporate infrared
photometry into MLCS2k2 by using observations inJHK to provide a joint prior constraint onRV

andA0
V , that is then used to fit the optical data (Jha, Prieto, & Krisciunas, in preparation).

What are the effects of possible variations inRV on our derived MLCS2k2 distances? The
results from the extinguished objects with a uniform prior have a mean〈RV〉 = 2.7 (with the default
MLCS2k2 prior, the mean is 2.9). The majority of the Hubble flow sample has low extinction,
whereRV variation has nearly negligible effects, and we had fixedRV ≡ 3.1 for objects with
A0

V < 0.5 mag. We have refit the full Hubble flow sample using a new priorwith the same shape
but 〈RV〉 = 2.7, as well as a fixedRV ≡ 2.7 for objects withA0

V < 0.5 mag. On average, the
distance moduli increase by 0.019 mag, with an average increase for the fixedRV subsample of
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0.014 mag (both corresponding to less than a 1% increase in distance). The effect of a smallerRV

on differential measurements (such as determiningH0 from the Hubble flow sample and a Cepheid
calibrated sample) would be less, because all distances would be slightly increased. At present, we
find no compelling evidence to favor a constantRV = 2.7 overRV = 3.1 for low-extinction SN Ia
samples such as are typically used in cosmological applications. Allowing for RV variations over
this range could yield a plausible estimate of the systematic uncertainty, but more problematic for
precision cosmology would be a systematic change in theRV distribution with redshift,
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A. Extinction Priors

Measurements of the luminosity distances to type Ia supernovae need to account for the line-
of-sight absorption by dust to yield a precise and accurate estimate. The most common approach
is to measure the color excess resulting from selective absorption, and with the use of a reddening
law, estimate the extinction. Unfortunately, uncertaintyin the fiducial color frequently dominates
the individual distance uncertainty, arising from the uncertainty (added in quadrature) of two true
flux measurements and the intrinsic dispersion of SN Ia colors. Frequent and high precision mon-
itoring of nearby SN Ia can remove the contribution of measurement uncertainty, revealing the
intrinsic color dispersion to be approximately 0.05 mag foroptical colors as shown in Figure 6.
Multiplying this intrinsic uncertainty by a standard reddening law,RV = 3.1, yields the observed
SN Ia distance dispersion of 0.15-0.20 mag. However, failure to measure colors to better precision
than the intrinsic dispersion may result in greatly degraded distance precision.

A significant improvement in the extinction estimate can be realized by the use of a Bayesian
prior on the extinction parameter because a good deal is known about the likely values of ex-
tinction, a priori. The most basic and unassailable truths about extinction are that it cannot be
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negative19 and that increasing values are decreasingly likely due to the unlikely viewing angles
required for large extinction, and for some surveys, magnitude limits. Models by Hatano, Branch,
& Deaton (1998), Commins (2004), and Riello & Patat (2005) show that for late type galaxies,
the likelihood distribution for extinguished lines of sight follows an exponential function with a
maximum at zero extinction. In Figure 6 we use this function constrained by the a posteriori color
distribution to determine a decay constant for the exponential of ∼0.5 mag inAV . The use of such
an extinction prior represents great potential improvement to this precision-limiting measure of SN
Ia distances. This approach was first used by Riess, Press, and Kirshner (1996a) and later by Riess
et al. (1998a) and Phillips et al. (1999) as well as in the present work. However, the well known
danger of using a priori information is that it may be in errorand thus propagate systematic errors
into the final distance estimate. In addition, one must be careful to use an unbiased estimator of
extinction from the posterior likelihood distribution to avoid additional systematic error. To weigh
the advantages and disadvantages of using extinction priors for realistic measurements of SN Ia,
we have undertaken a set of Monte Carlo simulations.

Our simulations model 104 SN Ia, each with a fixed intrinsicB−V color drawn from a Gaus-
sian distribution (with zero mean, and standard deviationσint) and an extinctionAV drawn from
an exponential distribution (with scale lengthτ). We then simulatenobs measurements of the SN
B−V color, each with a Gaussian errorσmeas, and subsequently “fit” for the extinction, determin-
ing its posterior probability distribution function with the application of a prior (either the true one
describing the input extinction distribution, a more conservative prior, none at all, or an incorrect
one). For each posterior pdf we extract both the mean and the mode, calculate the error between
the posterior estimate and the input extinction, and analyze this error distribution over the whole
simulated sample. These quantities may also be calculated analytically using Bayes’s Theorem,
but we prefer the numerical approach for ease of the incorporation of a variety of functional forms
for the extinction prior.20

As an example, we show in Figure 20 the results fornobs= 5,σmeas= 0.1 mag,σint =0.05 mag,
andτ = 0.5 mag, parameters chosen to correspond to adequate but minimal color measurements,
such as those used in Riess et al. (1998a) for the detection ofcosmic acceleration, and we have fit
the simulated sample with both the correct prior ( ˆp(AV) ∝ exp(−AV/τ), with τ = 0.5 mag) and no
prior at all (allowing the fitAV to be negative as well).

As shown, use of the mean of the individual extinction likelihoods results in an unbiased
estimate of the extinction and an increased precision relative to the absence of an extinction prior.

19For the case of rare light echoes in the presence of excessivequantities of circumstellar dust, scattering can add
some additional light to the observer’s view, though the neteffect is still positive extinction, albeit with a different ratio
of selective to total absorption as discussed by Wang (2005).

20The simulation routine is available athttp://astro.berkeley.edu/∼saurabh/mlcs2k2/

http://astro.berkeley.edu/~saurabh/mlcs2k2/
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Fig. 20.— Distributions of the extinction bias (top panel) and input and posterior mean extinction
(bottom panel) from a simulation of 104 SN Ia, with a Gaussian intrinsicB−V color scatter of
σint = 0.05 mag, “observed” on 5 epochs with a precision ofσmeas = 0.1 mag in each color
measurement. The SN are drawn from an exponentialAV distribution with a scale lengthτ = 0.5
mag (blue histogram), and then fit with a prior matching the extinction distribution (black), as well
as without any prior (red). For each fit, the mean of the posterior extinction distribution (with and
without a prior) is used as the extinction estimate, and these distributions are shown in the lower
panel. The upper panel then shows the difference between the posterior mean extinction and the
true extinction. Use of the correct extinction prior shows no mean bias (dotted lines), and improves
the precision of the extinction measurement.
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Because the weight of distance estimates for cosmological parameter estimation is proportional
to the square of the uncertainty, the precision of 0.18 mag per SN Ia using the prior represents a
50% improvement over the use of no prior for this realistic case. For more poorly measured colors
(σmeas= 0.2 mag) or fewer independent measurements, the improvement approaches a factor of
two, akin to doubling the cosmological sample.

Another way extinction priors yield benefits besides improved distance precision is by reining
in errors in the knowledge of the intrinsic properties of SN Ia. The most relevant example is our
estimate of the fiducial, unreddened color of an SN Ia, used toestimate the color excess and the
net extinction. As an example we consider in Figure 21 the extinction bias resulting from a mis-
estimate of the unreddened color (with the previous minimalbut adequate color measurements).
Without a prior the systematic extinction error is exactly the color error multiplied by the red-
dening law. With the prior, the extinction error becomes smaller because the valuable knowledge
about the likely extinction weighs in, reducing the effect of the measurement inaccuracy. Taking
a realistic example of an 0.03 mag mis-estimate in the unreddened color, the bias is reduced from
0.10 mag without a prior to 0.07 mag with the prior. However, the net bias for most cosmological
measurements will be negligible if the color error (and extinction distribution) is independent of
redshift. For cosmological measurements, this color errormay be usefully thought of as acolor
evolution. Again, for such a color evolution, the net bias is reduced byone-third with the use of an
extinction prior.

Nonetheless, a basic disadvantage of using priors is that biases may result from the use of
an incorrect prior.21 As an example we show in Figure 22 the extinction bias as a function of the
exponential decay scale length assumed for the prior. Values differing from the input ofτ = 0.5
mag result in an under- or over-estimate of the mean extinction. Using the results from Riello &
Patat (2005) we can guess the approximate size of an error inτ by imagining it was determined
from galaxy-based simulations and in so doing we have mis-estimated the relative importance of
the bulge to the total luminosity in late-type galaxies. Thedotted lines show that a 30% error
in this ratio (and thus reducing or augmenting the scale length by a factor of 1.5) results in a
∼0.03 mag bias. In practice (i.e., for cosmological applications) a net bias would only result from
unaccounted for differences inτ between high and low redshift such as may result from evolution
or sample selection. Interestingly, we also find that the effect of taking a so-called “weak” prior,

21A bias can also occur when a moment other than the mean of the individual extinction likelihood function is
used as discussed by Perlmutter et al. (1999). For example, in Riess et al. (1998a) the maximum likelihood (i.e., the
mode of posterior distribution) was initially used, which results in an 0.06 mag bias as determined from our simulation.
However, because the bias occurs for both low and high redshift SN Ia similarly, the net bias (i.e., in the difference) was
much smaller. Modeling the low-redshift SN Ia as having twice as many observations each with twice the individual
precision (nobs=10,σmeas= 0.05 mag) shows that the net bias is 0.02 mag in the distance difference at low and high
redshifts, much smaller than the 0.05 mag error in the mean ofthe high-redshift sample.
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Fig. 21.— Mitigating effect of the extinction prior given an error or evolution in themean intrinsic
color. The use of the prior (solid) reduces the extinction bias by a factor of one-third relative to no
prior (dashed, red in the electronic edition). The dotted lines show a plausible range of±0.03 mag
in the mean intrinsic color.



– 61 –

that p̂(AV) is constant forAV ≥ 0, and zero forAV < 0 is a worse choice, resulting in a bias of
0.07 mag. The reason is that the mean of such a prior is unnaturally large, biasing the extinction
estimate in that direction. Likewise, assuming negligibleextinction will result in an underestimate,
equal to the mean of the true distribution (which, for an exponential, is the value of the scale length
itself). The lesson is intuitively clear, when using a priorit is important to take the best estimate
(and estimate a systematic error from the range of good guesses) as a seemingly ”conservative” or
”weak” version can be worse.

For a specific SN sample it is probably best to simulate the sources and sizes of uncertainty
depending on the data quality before determining whether the use of an extinction prior offers more
to gain than to lose. Our simulations reveal nothing that intuition does not: a good measurement is
better than a bad prior, and a good prior will improve imperfect measurements.
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